Self-assembly of polystyrene sphere colloidal crystals by in situ solvent evaporation method

2009 ◽  
Vol 159 (17-18) ◽  
pp. 1744-1750 ◽  
Author(s):  
Yanan Fu ◽  
Zhengguo Jin ◽  
Guoqi Liu ◽  
Yuxin Yin
2012 ◽  
Vol 29 (6) ◽  
pp. 639
Author(s):  
Changping SONG ◽  
Junkang LIU ◽  
Zhongbin NI ◽  
Mingqing CHEN ◽  
Shirong LIU

e-Polymers ◽  
2010 ◽  
Vol 10 (1) ◽  
Author(s):  
Jun Cao ◽  
Yuanwei Chen ◽  
Niancao Chen ◽  
Xianglin Luo

AbstractPhosphorylcholine-containing poly(L-lactide) (PLLA-PC) is a kind of amphiphilic copolymer synthesized with L-lactide (LLA) as monomer and glycerophosphorylcholine as ring-opening reagent. In this paper, self-assembly nanoparticles of PLLA-PC were prepared with solvent evaporation method. The factors that affected the properties and stability of nanoparticles were investigated. Transmission electron microscope (TEM) indicated that PLLA-PC nanoparticles presented typical core/shell structure. The critical micelle concentration (CMC) was determined with fluorescent probe method. The results showed that the CMCs were quite low (< 1×10-3 g/l) and were dependent on LLA units in the copolymer. The size of the nanoparticles was detected by dynamic light scattering (DLS). The results indicated that the size could be affected by LLA units, the amount of solvent and water in the preparation process. On the other hand, the obtained nanoparticles were stable while being stored at 4 °C, and hardly changed over the dilution with water, which was of great importance in venous injection. The solubility of clofazimine was better in aqueous solution of PLLA-PC nanoparticles than in pure water. This preliminary study suggested that PLLA-PC nanoparticles had a great potential as delivery system for hydrophobic drug.


2014 ◽  
Vol 968 ◽  
pp. 44-48
Author(s):  
Jun Cong Liu ◽  
Dan Yong Wang ◽  
Yi Wei Chen ◽  
Shu Hu Li ◽  
Hua Zhen Wei

s: For the problem that cracks exist when the advanced materials are attacked or shocked, and the cracks are hard to self-healing. The microcapsules are put forward to make great effects on healing the cracks to some extents. The manufacturing methods of microcapsules are reviewed, including Matrix Polymerization, In-situ Polymerization, In-situ Cross-linking, Solvent Evaporation Method. And the conclusion and problems are prospected finally.


2019 ◽  
Vol 9 (01) ◽  
pp. 21-26
Author(s):  
Arif Budiman ◽  
Ayu Apriliani ◽  
Tazyinul Qoriah ◽  
Sandra Megantara

Purpose: To develop glibenclamide-nicotinamide cocrystals with the solvent evaporation method and evaluate their solubility and dissolution properties. Methods: Cocrystals of glibenclamide-nicotinamide (1:2) were prepared with the solvent evaporation method. The prediction of interactive cocrystals was observed using in silico method. The solubility and dissolution were performed as evaluation of cocrystals. The cocrystals also were characterized by differential scanning calorimetry (DSC), infrared spectrophotometry, and powder X-ray diffraction (PXRD). Result: The solubility and dissolution profile of glibenclamide-nicotinamide cocrystal (1:2) increased significantly compared to pure glibenclamide as well as its physical mixture. Characterization of cocrystal glibenclamide-nicotinamide (1:2) including infrared Fourier transform, DSC, and PXRD, indicated the formation of a new solid crystal phase differing from glibenclamide and nicotinamide. Conclusion: The confirmation of cocrystal glibenclamide-nicotinamide (1:2) indicated the formation of new solid crystalline phases that differ from pure glibenclamide and its physical mixture


Author(s):  
Adel M. Aly ◽  
Ahmed S. Ali

: Glipizide (GZ) is an oral blood-glucose-lowering drug of the sulfonylurea class characterized by its poor aqueous solubility. Aiming for the production of GZ tablets with rapid onset of action followed by prolonged effect; GZ-Polyethylene glycol (PEG 4000 and 6000) solid dispersions with different ratios, (using melting and solvent evaporation method), as well as, coprecipitate containing GZ with polymethyl-methacrylate (PMMA) were prepared. Four tablet formulations were prepared containing; a) GZ alone, b) GZ: PEG6000, 1:10, c) GZ:PMMA 1:3, and, d)both GZ:PEG6000 1:10 and GZ:PMMA 1:3. The solvent evaporation method showed more enhancement of GZ solubility than the melting one, and this solubilizing effect increased with PEG increment. Generally, PEG6000 showed more enhancement of dissolution than PEG4000 especially at 1:10 drug: polymer ratio (the most enhancing formula). Also, the prepared tablet formulations showed acceptable physical properties according to USP/NF requirements. The dissolution results revealed that tablets containing PEG6000 (1:10) have the most rapid release rate, followed by the formula containing both PEG6000 and PMMA, while that including PMMA alone showed the slowest dissolution rate. Moreover, In-vivo studies for each of the above four formulations, were performed using four mice groups. The most effective formula in decreasing the blood glucose level, through the first 6 hours, was that containing GZ and PEG6000, 1:10. However, formula containing the combination of enhanced and sustained GZ was the most effective in decreasing the blood glucose level through 16 hours. Successful in-vitro in-vivo correlations could be detected between the percent released and the percent decreasing of blood glucose level after 0.5 hours.


Author(s):  
Bhikshapathi D. V. R. N. ◽  
Srinivas I

Repaglinide is a pharmaceutical drug used for the treatment of type II diabetes mellitus, it is characterized with poor solubility which limits its absorption and dissolution rate and delays onset of action. In the present study, immediate release solid dispersion of repaglinide was formulated by solvent evaporation technique. Repaglinide solid dispersions were prepared using PEG 8000, Pluronic F 127 and Gelucire 44/14 by solvent evaporation method. A 3-factor, 3-level central composite design employed to study the effect of each independent variable on dependent variables. FTIR studies revealed that no drug excipient interaction takes place. From powder X-ray diffraction (p-XRD) and by scanning electron microscopy (SEM) studies it was evident that polymorphic form of repaglinide has been converted into an amorphous form from crystalline within the solid dispersion formulation. The correlation coefficient showed that the release profile followed Higuchi model anomalous behavior and hence release mechanism was indicative of diffusion. The obtained results suggested that developed solid dispersion by solvent evaporation method might be an efficacious approach for enhancing the solubility and dissolution rate of repaglinide.


Author(s):  
Siwei Yang ◽  
Qiang Sun ◽  
Weihang Han ◽  
Yuanfang Shen ◽  
Zhigang Ni ◽  
...  

A simple and high efficient porous composites via the solvent evaporation method using g-C3N4 and NiSO4 was developed. It can super rapidly remove multiple organic dyes in water including rhodamine...


Sign in / Sign up

Export Citation Format

Share Document