Mechanisms of long-distance extracellular electron transfer of metal-reducing bacteria mediated by nanocolloidal semiconductive iron oxides

2013 ◽  
Vol 1 (16) ◽  
pp. 5148 ◽  
Author(s):  
Ryuhei Nakamura ◽  
Fumiyoshi Kai ◽  
Akihiro Okamoto ◽  
Kazuhito Hashimoto
mBio ◽  
2014 ◽  
Vol 5 (6) ◽  
Author(s):  
Caleb E. Levar ◽  
Chi Ho Chan ◽  
Misha G. Mehta-Kolte ◽  
Daniel R. Bond

ABSTRACTDissimilatory metal-reducing bacteria, such asGeobacter sulfurreducens, transfer electrons beyond their outer membranes to Fe(III) and Mn(IV) oxides, heavy metals, and electrodes in electrochemical devices. In the environment, metal acceptors exist in multiple chelated and insoluble forms that span a range of redox potentials and offer different amounts of available energy. Despite this, metal-reducing bacteria have not been shown to alter their electron transfer strategies to take advantage of these energy differences. Disruption ofimcH, encoding an inner membranec-type cytochrome, eliminated the ability ofG. sulfurreducensto reduce Fe(III) citrate, Fe(III)-EDTA, and insoluble Mn(IV) oxides, electron acceptors with potentials greater than 0.1 V versus the standard hydrogen electrode (SHE), but theimcHmutant retained the ability to reduce Fe(III) oxides with potentials of ≤−0.1 V versus SHE. TheimcHmutant failed to grow on electrodes poised at +0.24 V versus SHE, but switching electrodes to −0.1 V versus SHE triggered exponential growth. At potentials of ≤−0.1 V versus SHE, both the wild type and theimcHmutant doubled 60% slower than at higher potentials. Electrodes poised even 100 mV higher (0.0 V versus SHE) could not triggerimcHmutant growth. These results demonstrate thatG. sulfurreducenspossesses multiple respiratory pathways, that some of these pathways are in operation only after exposure to low redox potentials, and that electron flow can be coupled to generation of different amounts of energy for growth. The redox potentials that trigger these behaviors mirror those of metal acceptors common in subsurface environments whereGeobacteris found.IMPORTANCEInsoluble metal oxides in the environment represent a common and vast reservoir of energy for respiratory microbes capable of transferring electrons across their insulating membranes to external acceptors, a process termed extracellular electron transfer. Despite the global biogeochemical importance of metal cycling and the ability of such organisms to produce electricity at electrodes, fundamental gaps in the understanding of extracellular electron transfer biochemistry exist. Here, we describe a conserved inner membrane redox protein inGeobacter sulfurreducenswhich is required only for electron transfer to high-potential compounds, and we show thatG. sulfurreducenshas the ability to utilize different electron transfer pathways in response to the amount of energy available in a metal or electrode distant from the cell.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yonggang Yang ◽  
Zegao Wang ◽  
Cuifen Gan ◽  
Lasse Hyldgaard Klausen ◽  
Robin Bonné ◽  
...  

AbstractLong-distance extracellular electron transfer has been observed in Gram-negative bacteria and plays roles in both natural and engineering processes. The electron transfer can be mediated by conductive protein appendages (in short unicellular bacteria such as Geobacter species) or by conductive cell envelopes (in filamentous multicellular cable bacteria). Here we show that Lysinibacillus varians GY32, a filamentous unicellular Gram-positive bacterium, is capable of bidirectional extracellular electron transfer. In microbial fuel cells, L. varians can form centimetre-range conductive cellular networks and, when grown on graphite electrodes, the cells can reach a remarkable length of 1.08 mm. Atomic force microscopy and microelectrode analyses suggest that the conductivity is linked to pili-like protein appendages. Our results show that long-distance electron transfer is not limited to Gram-negative bacteria.


2012 ◽  
Vol 40 (6) ◽  
pp. 1261-1267 ◽  
Author(s):  
Liang Shi ◽  
Kevin M. Rosso ◽  
John M. Zachara ◽  
James K. Fredrickson

Originally discovered in the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 (MR-1), key components of the Mtr (i.e. metal-reducing) pathway exist in all strains of metal-reducing Shewanella characterized. The protein components identified to date for the Mtr pathway of MR-1 include four multihaem c-Cyts (c-type cytochromes), CymA, MtrA, MtrC and OmcA, and a porin-like outer membrane protein MtrB. They are strategically positioned along the width of the MR-1 cell envelope to mediate electron transfer from the quinone/quinol pool in the inner membrane to Fe(III)-containing minerals external to the bacterial cells. A survey of microbial genomes has identified homologues of the Mtr pathway in other dissimilatory Fe(III)-reducing bacteria, including Aeromonas hydrophila, Ferrimonas balearica and Rhodoferax ferrireducens, and in the Fe(II)-oxidizing bacteria Dechloromonas aromatica RCB, Gallionella capsiferriformans ES-2 and Sideroxydans lithotrophicus ES-1. The apparent widespread distribution of Mtr pathways in both Fe(III)-reducing and Fe(II)-oxidizing bacteria suggests a bidirectional electron transfer role, and emphasizes the importance of this type of extracellular electron-transfer pathway in microbial redox transformation of iron. The organizational and electron-transfer characteristics of the Mtr pathways may be shared by other pathways used by micro-organisms for exchanging electrons with their extracellular environments.


mBio ◽  
2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Connor T. Skennerton ◽  
Karuna Chourey ◽  
Ramsunder Iyer ◽  
Robert L. Hettich ◽  
Gene W. Tyson ◽  
...  

ABSTRACT The anaerobic oxidation of methane by anaerobic methanotrophic (ANME) archaea in syntrophic partnership with deltaproteobacterial sulfate-reducing bacteria (SRB) is the primary mechanism for methane removal in ocean sediments. The mechanism of their syntrophy has been the subject of much research as traditional intermediate compounds, such as hydrogen and formate, failed to decouple the partners. Recent findings have indicated the potential for extracellular electron transfer from ANME archaea to SRB, though it is unclear how extracellular electrons are integrated into the metabolism of the SRB partner. We used metagenomics to reconstruct eight genomes from the globally distributed SEEP-SRB1 clade of ANME partner bacteria to determine what genomic features are required for syntrophy. The SEEP-SRB1 genomes contain large multiheme cytochromes that were not found in previously described free-living SRB and also lack periplasmic hydrogenases that may prevent an independent lifestyle without an extracellular source of electrons from ANME archaea. Metaproteomics revealed the expression of these cytochromes at in situ methane seep sediments from three sites along the Pacific coast of the United States. Phylogenetic analysis showed that these cytochromes appear to have been horizontally transferred from metal-respiring members of the Deltaproteobacteria such as Geobacter and may allow these syntrophic SRB to accept extracellular electrons in place of other chemical/organic electron donors. IMPORTANCE Some archaea, known as anaerobic methanotrophs, are capable of converting methane into carbon dioxide when they are growing syntopically with sulfate-reducing bacteria. This partnership is the primary mechanism for methane removal in ocean sediments; however, there is still much to learn about how this syntrophy works. Previous studies have failed to identify the metabolic intermediate, such as hydrogen or formate, that is passed between partners. However, recent analysis of methanotrophic archaea has suggested that the syntrophy is formed through direct electron transfer. In this research, we analyzed the genomes of multiple partner bacteria and showed that they also contain the genes necessary to perform extracellular electron transfer, which are absent in related bacteria that do not form syntrophic partnerships with anaerobic methanotrophs. This genomic evidence shows a possible mechanism for direct electron transfer from methanotrophic archaea into the metabolism of the partner bacteria. IMPORTANCE Some archaea, known as anaerobic methanotrophs, are capable of converting methane into carbon dioxide when they are growing syntopically with sulfate-reducing bacteria. This partnership is the primary mechanism for methane removal in ocean sediments; however, there is still much to learn about how this syntrophy works. Previous studies have failed to identify the metabolic intermediate, such as hydrogen or formate, that is passed between partners. However, recent analysis of methanotrophic archaea has suggested that the syntrophy is formed through direct electron transfer. In this research, we analyzed the genomes of multiple partner bacteria and showed that they also contain the genes necessary to perform extracellular electron transfer, which are absent in related bacteria that do not form syntrophic partnerships with anaerobic methanotrophs. This genomic evidence shows a possible mechanism for direct electron transfer from methanotrophic archaea into the metabolism of the partner bacteria.


2013 ◽  
Vol 15 (44) ◽  
pp. 19262 ◽  
Author(s):  
Ryan Renslow ◽  
Jerome Babauta ◽  
Andrew Kuprat ◽  
Jim Schenk ◽  
Cornelius Ivory ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document