mediate electron transfer
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 4)

H-INDEX

4
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Rapha&eumll M&eacuteheust ◽  
Shuo Huang ◽  
Rafael Rivera-Lugo ◽  
Jill Banfield ◽  
Samuel H. Light

Disparate redox biochemistries that take place beyond the bounds of the prokaryotic cell cytosol must connect to membrane or cytosolic electron pools. Proteins post-translationally flavinylated by the enzyme ApbE mediate electron transfer in several characterized extracytosolic redox biochemistries but the breadth of functions of this modification remains unknown. Here we present a comprehensive bioinformatic analysis of 31,910 prokaryotic genomes that provides evidence of extracytosolic ApbEs within ~50% of bacteria and the involvement of flavinylation in numerous uncharacterized biochemistries. By mining flavinylation-associated gene clusters, we identify five protein classes responsible for transmembrane electron transfer and two domains of unknown function (DUF2271 and DUF3570) that are flavinylated by ApbE. We observe flavinylation/iron transporter gene colocalization patterns that suggest functions in iron reduction and assimilation. We find associations with characterized and uncharacterized respiratory oxidoreductases that highlight roles of flavinylation in respiratory electron transport chains. Finally, we identify interspecies gene cluster variability consistent with flavinylation/cytochrome functional redundancies and discover a class of multi-flavinylated proteins that may resemble multiheme cytochromes in facilitating longer distance electron transfer. These findings provide mechanistic insight into an important facet of bacterial physiology and establish flavinylation as a functionally diverse mediator of extracytosolic electron transfer.


2020 ◽  
Vol 295 (10) ◽  
pp. 2984-2999 ◽  
Author(s):  
Yanxiang Meng ◽  
Campbell R. Sheen ◽  
Nicholas J. Magon ◽  
Mark B. Hampton ◽  
Renwick C. J. Dobson

During aerobic growth, the Gram-positive facultative anaerobe and opportunistic human pathogen Streptococcus pneumoniae generates large amounts of hydrogen peroxide that can accumulate to millimolar concentrations. The mechanism by which this catalase-negative bacterium can withstand endogenous hydrogen peroxide is incompletely understood. The enzyme alkylhydroperoxidase D (AhpD) has been shown to contribute to pneumococcal virulence and oxidative stress responses in vivo. We demonstrate here that SpAhpD exhibits weak thiol-dependent peroxidase activity and, unlike the previously reported Mycobacterium tuberculosis AhpC/D system, SpAhpD does not mediate electron transfer to SpAhpC. A 2.3-Å resolution crystal structure revealed several unusual structural features, including a three-cysteine active site architecture that is buried in a deep pocket, in contrast to the two-cysteine active site found in other AhpD enzymes. All single-cysteine SpAhpD variants remained partially active, and LC-MS/MS analyses revealed that the third cysteine, Cys-163, formed disulfide bonds with either of two cysteines in the canonical Cys-78-X–X-Cys-81 motif. We observed that SpAhpD formed a dimeric quaternary structure both in the crystal and in solution, and that the highly conserved Asn-76 of the AhpD core motif is important for SpAhpD folding. In summary, SpAhpD is a weak peroxidase and does not transfer electrons to AhpC, and therefore does not fit existing models of bacterial AhpD antioxidant defense mechanisms. We propose that it is unlikely that SpAhpD removes peroxides either directly or via AhpC, and that SpAhpD cysteine oxidation may act as a redox switch or mediate electron transfer with other thiol proteins.


2019 ◽  
Vol 6 (6) ◽  
pp. 1791-1798 ◽  
Author(s):  
Xiangyu Bi ◽  
Paul Westerhoff

We probed that metallic nanoparticles (NPs) can mediate electron transfer in water by different schemes.


2019 ◽  
Vol 215 ◽  
pp. 39-53 ◽  
Author(s):  
D. Buesen ◽  
T. Hoefer ◽  
H. Zhang ◽  
N. Plumeré

Redox-active films are advantageous matrices for the immobilization of photosynthetic proteins, due to their ability to mediate electron transfer as well as to achieve high catalyst loading on an electrode for efficient generation of electricity or solar fuels.


2012 ◽  
Vol 40 (6) ◽  
pp. 1261-1267 ◽  
Author(s):  
Liang Shi ◽  
Kevin M. Rosso ◽  
John M. Zachara ◽  
James K. Fredrickson

Originally discovered in the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 (MR-1), key components of the Mtr (i.e. metal-reducing) pathway exist in all strains of metal-reducing Shewanella characterized. The protein components identified to date for the Mtr pathway of MR-1 include four multihaem c-Cyts (c-type cytochromes), CymA, MtrA, MtrC and OmcA, and a porin-like outer membrane protein MtrB. They are strategically positioned along the width of the MR-1 cell envelope to mediate electron transfer from the quinone/quinol pool in the inner membrane to Fe(III)-containing minerals external to the bacterial cells. A survey of microbial genomes has identified homologues of the Mtr pathway in other dissimilatory Fe(III)-reducing bacteria, including Aeromonas hydrophila, Ferrimonas balearica and Rhodoferax ferrireducens, and in the Fe(II)-oxidizing bacteria Dechloromonas aromatica RCB, Gallionella capsiferriformans ES-2 and Sideroxydans lithotrophicus ES-1. The apparent widespread distribution of Mtr pathways in both Fe(III)-reducing and Fe(II)-oxidizing bacteria suggests a bidirectional electron transfer role, and emphasizes the importance of this type of extracellular electron-transfer pathway in microbial redox transformation of iron. The organizational and electron-transfer characteristics of the Mtr pathways may be shared by other pathways used by micro-organisms for exchanging electrons with their extracellular environments.


2003 ◽  
Vol 15 (1) ◽  
pp. 58-61 ◽  
Author(s):  
D.J. Milliron ◽  
A.P. Alivisatos ◽  
C. Pitois ◽  
C. Edder ◽  
J.M.J. Fréchet

1987 ◽  
Vol 243 (1) ◽  
pp. 241-248 ◽  
Author(s):  
C Godfrey ◽  
P M A Gadsby ◽  
A J Thomson ◽  
C Greenwood ◽  
A Coddington

The membrane-bound respiratory particle complex of Pseudomonas aeruginosa, which reduces nitrate to nitrite using formate as the electron donor, was prepared and characterized by e.p.r. and low-temperature magnetic c.d. (m.c.d.) spectroscopy. The particle complex has two enzymic components, namely nitrate reductase (NiR) and formate dehydrogenase (FDH), which are multi-centred proteins containing molybdenum, iron-sulphur clusters and cytochrome. By using results from work on the purified extracted enzymes NiR and FDH to aid in the assignment, it has been possible to observe spectroscopically all the components of the electron-transfer chain in the intact particle. This led to a proposal for the organization of the metal components of the FDH-NiR chain. Molybdenum ions are at opposite ends of the chain and interact with, respectively, the formate-CO2 couple and the nitrate-nitrite couple. The molybdenum ion at the low-potential end of the chain passes electrons to cytochrome b of FDH, a bishistidine-co-ordinated haem with unusual steric restraint at the iron. The next component is a [4Fe-4S] cluster. This comprises all the components of FDH. Electrons are passed to the molybdenum of NiR via a number, probably two, of [4Fe-4S] clusters. No evidence has been found in this work for the presence of a quinone to mediate electron transfer between FDH and NiR. Cytochrome c appears to be able to feed electrons into the chain at the level of one of the [4Fe-4S] centres of NiR.


Sign in / Sign up

Export Citation Format

Share Document