scholarly journals An Inner Membrane Cytochrome Required Only for Reduction of High Redox Potential Extracellular Electron Acceptors

mBio ◽  
2014 ◽  
Vol 5 (6) ◽  
Author(s):  
Caleb E. Levar ◽  
Chi Ho Chan ◽  
Misha G. Mehta-Kolte ◽  
Daniel R. Bond

ABSTRACTDissimilatory metal-reducing bacteria, such asGeobacter sulfurreducens, transfer electrons beyond their outer membranes to Fe(III) and Mn(IV) oxides, heavy metals, and electrodes in electrochemical devices. In the environment, metal acceptors exist in multiple chelated and insoluble forms that span a range of redox potentials and offer different amounts of available energy. Despite this, metal-reducing bacteria have not been shown to alter their electron transfer strategies to take advantage of these energy differences. Disruption ofimcH, encoding an inner membranec-type cytochrome, eliminated the ability ofG. sulfurreducensto reduce Fe(III) citrate, Fe(III)-EDTA, and insoluble Mn(IV) oxides, electron acceptors with potentials greater than 0.1 V versus the standard hydrogen electrode (SHE), but theimcHmutant retained the ability to reduce Fe(III) oxides with potentials of ≤−0.1 V versus SHE. TheimcHmutant failed to grow on electrodes poised at +0.24 V versus SHE, but switching electrodes to −0.1 V versus SHE triggered exponential growth. At potentials of ≤−0.1 V versus SHE, both the wild type and theimcHmutant doubled 60% slower than at higher potentials. Electrodes poised even 100 mV higher (0.0 V versus SHE) could not triggerimcHmutant growth. These results demonstrate thatG. sulfurreducenspossesses multiple respiratory pathways, that some of these pathways are in operation only after exposure to low redox potentials, and that electron flow can be coupled to generation of different amounts of energy for growth. The redox potentials that trigger these behaviors mirror those of metal acceptors common in subsurface environments whereGeobacteris found.IMPORTANCEInsoluble metal oxides in the environment represent a common and vast reservoir of energy for respiratory microbes capable of transferring electrons across their insulating membranes to external acceptors, a process termed extracellular electron transfer. Despite the global biogeochemical importance of metal cycling and the ability of such organisms to produce electricity at electrodes, fundamental gaps in the understanding of extracellular electron transfer biochemistry exist. Here, we describe a conserved inner membrane redox protein inGeobacter sulfurreducenswhich is required only for electron transfer to high-potential compounds, and we show thatG. sulfurreducenshas the ability to utilize different electron transfer pathways in response to the amount of energy available in a metal or electrode distant from the cell.

2018 ◽  
Vol 84 (23) ◽  
Author(s):  
Bridget E. Conley ◽  
Peter J. Intile ◽  
Daniel R. Bond ◽  
Jeffrey A. Gralnick

ABSTRACTExtracellular electron transfer (EET) is a strategy for respiration in which electrons generated from metabolism are moved outside the cell to a terminal electron acceptor, such as iron or manganese oxide. EET has primarily been studied in two model systems,Shewanella oneidensisandGeobacter sulfurreducens. Metal reduction has also been reported in numerous microorganisms, includingAeromonasspp., which are ubiquitousGammaproteobacteriafound in aquatic ecosystems, with some species capable of pathogenesis in humans and fish. Genomic comparisons ofAeromonasspp. revealed a potential outer membrane conduit homologous toS. oneidensisMtrCAB. While the ability to respire metals and mineral oxides is not widespread in the genusAeromonas, 90% of the sequencedAeromonas hydrophilaisolates contain MtrCAB homologs.A. hydrophilaATCC 7966 mutants lackingmtrAare unable to reduce metals. Expression ofA. hydrophila mtrCABin anS. oneidensismutant lacking homologous components restored metal reduction. Although the outer membrane conduits for metal reduction were similar, homologs of theS. oneidensisinner membrane and periplasmic EET components CymA, FccA, and CctA were not found inA. hydrophila. We characterized a cluster of genes predicted to encode components related to a formate-dependent nitrite reductase (NrfBCD), here named NetBCD (forNrf-likeelectrontransfer), and a predicted diheme periplasmic cytochrome, PdsA (periplasmicdihemeshuttle). We present genetic evidence that proteins encoded by this cluster facilitate electron transfer from the cytoplasmic membrane across the periplasm to the MtrCAB conduit and function independently from an authentic NrfABCD system.A. hydrophilamutants lackingpdsAandnetBCDwere unable to reduce metals, while heterologous expression of these genes could restore metal reduction in anS. oneidensismutant background. EET may therefore allowA. hydrophilaand other species ofAeromonasto persist and thrive in iron- or manganese-rich oxygen-limited environments.IMPORTANCEMetal-reducing microorganisms are used for electricity production, bioremediation of toxic compounds, wastewater treatment, and production of valuable compounds. Despite numerous microorganisms being reported to reduce metals, the molecular mechanism has primarily been studied in two model systems,Shewanella oneidensisandGeobacter sulfurreducens. We have characterized the mechanism of extracellular electron transfer inAeromonas hydrophila, which uses the well-studiedShewanellasystem, MtrCAB, to move electrons across the outer membrane; however, mostAeromonasspp. appear to use a novel mechanism to transfer electrons from the inner membrane through the periplasm and to the outer membrane. The conserved use of MtrCAB inShewanellaspp. andAeromonasspp. for metal reduction and conserved genomic architecture of metal reduction genes inAeromonasspp. may serve as genomic markers for identifying metal-reducing microorganisms from genomic or transcriptomic sequencing. Understanding the variety of pathways used to reduce metals can allow for optimization and more efficient design of microorganisms used for practical applications.


2021 ◽  
Author(s):  
Komal Joshi ◽  
Chi Ho Chan ◽  
Daniel R. Bond

AbstractGeobacter sulfurreducens utilizes extracellular electron acceptors such as Mn(IV), Fe(III), syntrophic partners, and electrodes that vary from +0.4 to −0.3 V vs. Standard Hydrogen Electrode (SHE), representing a potential energy span that should require a highly branched electron transfer chain. Here we describe CbcBA, a bc-type cytochrome essential near the thermodynamic limit of respiration when acetate is the electron donor. Mutants lacking cbcBA ceased Fe(III) reduction at −0.21 V vs. SHE, could not transfer electrons to electrodes between −0.21 and −0.28 V, and could not reduce the final 10% – 35% of Fe(III) minerals. As redox potential decreased during Fe(III) reduction, cbcBA was induced with the aid of the regulator BccR to become one of the most highly expressed genes in G. sulfurreducens. Growth yield (CFU/mM Fe(II)) was 112% of WT in ΔcbcBA, and deletion of cbcL (a different bc-cytochrome essential near −0.15 V) in ΔcbcBA increased yield to 220%. Together with ImcH, which is required at high redox potentials, CbcBA represents a third cytoplasmic membrane oxidoreductase in G. sulfurreducens. This expanding list shows how these important metal-reducing bacteria may constantly sense redox potential to adjust growth efficiency in changing environments.


2012 ◽  
Vol 78 (19) ◽  
pp. 6987-6995 ◽  
Author(s):  
Misha G. Mehta-Kolte ◽  
Daniel R. Bond

ABSTRACTThe current understanding of dissimilatory metal reduction is based primarily on isolates from the proteobacterial generaGeobacterandShewanella. However, environments undergoing active Fe(III) reduction often harbor less-well-studied phyla that are equally abundant. In this work, electrochemical techniques were used to analyze respiratory electron transfer by the only known Fe(III)-reducing representative of theAcidobacteria,Geothrix fermentans. In contrast to previously characterized metal-reducing bacteria, which typically reach maximal rates of respiration at electron acceptor potentials of 0 V versus standard hydrogen electrode (SHE),G. fermentansrequired potentials as high as 0.55 V to respire at its maximum rate. In addition,G. fermentanssecreted two different soluble redox-active electron shuttles with separate redox potentials (−0.2 V and 0.3 V). The compound with the lower midpoint potential, responsible for 20 to 30% of electron transfer activity, was riboflavin. The behavior of the higher-potential compound was consistent with hydrophilic UV-fluorescent molecules previously found inG. fermentanssupernatants. Both electron shuttles were also produced when cultures were grown with Fe(III), but not when fumarate was the electron acceptor. This study reveals thatGeothrixis able to take advantage of higher-redox-potential environments, demonstrates that secretion of flavin-based shuttles is not confined toShewanella, and points to the existence of high-potential-redox-active compounds involved in extracellular electron transfer. Based on differences between the respiratory strategies ofGeothrixandGeobacter, these two groups of bacteria could exist in distinctive environmental niches defined by redox potential.


mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Lucie Semenec ◽  
Ismael A. Vergara ◽  
Andrew E. Laloo ◽  
Steve Petrovski ◽  
Philip L. Bond ◽  
...  

ABSTRACT Interactions between microorganisms in mixed communities are highly complex, being either syntrophic, neutral, predatory, or competitive. Evolutionary changes can occur in the interaction dynamics between community members as they adapt to coexistence. Here, we report that the syntrophic interaction between Geobacter sulfurreducens and Pseudomonas aeruginosa coculture change in their dynamics over evolutionary time. Specifically, Geobacter sp. dominance increases with adaptation within the cocultures, as determined through quantitative PCR and fluorescence in situ hybridization. This suggests a transition from syntrophy to competition and demonstrates the rapid adaptive capacity of Geobacter spp. to dominate in cocultures with P. aeruginosa. Early in coculture establishment, two single-nucleotide variants in the G. sulfurreducens fabI and tetR genes emerged that were strongly selected for throughout coculture evolution with P. aeruginosa phenazine wild-type and phenazine-deficient mutants. Sequential window acquisition of all theoretical spectra-mass spectrometry (SWATH-MS) proteomics revealed that the tetR variant cooccurred with the upregulation of an adenylate cyclase transporter, CyaE, and a resistance-nodulation-division (RND) efflux pump notably known for antibiotic efflux. To determine whether antibiotic production was driving the increased expression of the multidrug efflux pump, we tested Pseudomonas-derived phenazine-1-carboxylic acid (PHZ-1-CA) for its potential to inhibit Geobacter growth and drive selection of the tetR and fabI genetic variants. Despite its inhibitory properties, PHZ-1-CA did not drive variant selection, indicating that other antibiotics may drive overexpression of the efflux pump and CyaE or that a novel role exists for these proteins in the context of this interaction. IMPORTANCE Geobacter and Pseudomonas spp. cohabit many of the same environments, where Geobacter spp. often dominate. Both bacteria are capable of extracellular electron transfer (EET) and play important roles in biogeochemical cycling. Although they recently in 2017 were demonstrated to undergo direct interspecies electron transfer (DIET) with one another, the genetic evolution of this syntrophic interaction has not been examined. Here, we use whole-genome sequencing of the cocultures before and after adaptive evolution to determine whether genetic selection is occurring. We also probe their interaction on a temporal level and determine whether their interaction dynamics change over the course of adaptive evolution. This study brings to light the multifaceted nature of interactions between just two microorganisms within a controlled environment and will aid in improving metabolic models of microbial communities comprising these two bacteria.


2020 ◽  
Vol 202 (7) ◽  
Author(s):  
Lars J. C. Jeuken ◽  
Kiel Hards ◽  
Yoshio Nakatani

ABSTRACT Exoelectrogens are able to transfer electrons extracellularly, enabling them to respire on insoluble terminal electron acceptors. Extensively studied exoelectrogens, such as Geobacter sulfurreducens and Shewanella oneidensis, are Gram negative. More recently, it has been reported that Gram-positive bacteria, such as Listeria monocytogenes and Enterococcus faecalis, also exhibit the ability to transfer electrons extracellularly, although it is still unclear whether this has a function in respiration or in redox control of the environment, for instance, by reducing ferric iron for iron uptake. In this issue of Journal of Bacteriology, Hederstedt and colleagues report on experiments that directly compare extracellular electron transfer (EET) pathways for ferric iron reduction and respiration and find a clear difference (L. Hederstedt, L. Gorton, and G. Pankratova, J Bacteriol 202:e00725-19, 2020, https://doi.org/10.1128/JB.00725-19), providing further insights and new questions into the function and metabolic pathways of EET in Gram-positive bacteria.


2020 ◽  
Vol 86 (20) ◽  
Author(s):  
Adolf Krige ◽  
Kerstin Ramser ◽  
Magnus Sjöblom ◽  
Paul Christakopoulos ◽  
Ulrika Rova

ABSTRACT Geobacter sulfurreducens is a good candidate as a chassis organism due to its ability to form thick, conductive biofilms, enabling long-distance extracellular electron transfer (EET). Due to the complexity of EET pathways in G. sulfurreducens, a dynamic approach is required to study genetically modified EET rates in the biofilm. By coupling online resonance Raman microscopy with chronoamperometry, we were able to observe the dynamic discharge response in the biofilm’s cytochromes to an increase in anode voltage. Measuring the heme redox state alongside the current allows for the fitting of a dynamic model using the current response and a subsequent validation of the model via the value of a reduced cytochrome c Raman peak. The modeled reduced cytochromes closely fitted the Raman response data from the G. sulfurreducens wild-type strain, showing the oxidation of heme groups in cytochromes until a new steady state was achieved. Furthermore, the use of a dynamic model also allows for the calculation of internal rates, such as acetate and NADH consumption rates. The Raman response of a mutant lacking OmcS showed a higher initial oxidation rate than predicted, followed by an almost linear decrease of the reduced mediators. The increased initial rate could be attributed to an increase in biofilm conductivity, previously observed in biofilms lacking OmcS. One explanation for this is that OmcS acts as a conduit between cytochromes; therefore, deleting the gene restricts the rate of electron transfer to the extracellular matrix. This could, however, be modeled assuming a linear oxidation rate of intercellular mediators. IMPORTANCE Bioelectrochemical systems can fill a vast array of application niches, due to the control of redox reactions that it offers. Although native microorganisms are preferred for applications such as bioremediation, more control is required for applications such as biosensors or biocomputing. The development of a chassis organism, in which the EET is well defined and readily controllable, is therefore essential. The combined approach in this work offers a unique way of monitoring and describing the reaction kinetics of a G. sulfurreducens biofilm, as well as offering a dynamic model that can be used in conjunction with applications such as biosensors.


Author(s):  
Toshiyuki Ueki ◽  
David J. F. Walker ◽  
Kelly P. Nevin ◽  
Joy E. Ward ◽  
Trevor L. Woodard ◽  
...  

Geobacter sulfurreducens is a model microbe for the study of biogeochemically and technologically significant processes, such as the reduction of Fe(III) oxides in soils and sediments, bioelectrochemical applications that produce electric current from waste organic matter or drive useful processes with the consumption of renewable electricity, direct interspecies electron transfer in anaerobic digestors and methanogenic soils and sediments, and metal corrosion. Elucidating the phenotypes associated with gene deletions is an important strategy for determining the mechanisms for extracellular electron transfer in G. sulfurreducens .


2017 ◽  
Vol 199 (8) ◽  
Author(s):  
Lubna V. Richter ◽  
Ashley E. Franks ◽  
Robert M. Weis ◽  
Steven J. Sandler

ABSTRACT Geobacter sulfurreducens, an anaerobic metal-reducing bacterium, possesses type IV pili. These pili are intrinsic structural elements in biofilm formation and, together with a number of c-type cytochromes, are thought to serve as conductive nanowires enabling long-range electron transfer (ET) to metal oxides and graphite anodes. Here, we report that a posttranslational modification of a nonconserved amino acid residue within the PilA protein, the structural subunit of the type IV pili, is crucial for growth on insoluble extracellular electron acceptors. Matrix-assisted laser desorption ionization (MALDI) mass spectrometry of the secreted PilA protein revealed a posttranslational modification of tyrosine-32 with a moiety of a mass consistent with a glycerophosphate group. Mutating this tyrosine into a phenylalanine inhibited cell growth with Fe(III) oxides as the sole electron acceptor. In addition, this amino acid substitution severely diminished biofilm formation on graphite surfaces and impaired current output in microbial fuel cells. These results demonstrate that the capability to attach to insoluble electron acceptors plays a crucial role for the cells' ability to utilize them. The work suggests that glycerophosphate modification of Y32 is a key factor contributing to the surface charge of type IV pili, influencing the adhesion of Geobacter to specific surfaces. IMPORTANCE Type IV pili are bacterial appendages that function in cell adhesion, virulence, twitching motility, and long-range electron transfer (ET) from bacterial cells to insoluble extracellular electron acceptors. The mechanism and role of type IV pili for ET in Geobacter sulfurreducens is still a subject of research. In this study, we identified a posttranslational modification of the major G. sulfurreducens type IV pilin, suggested to be a glycerophosphate moiety. We show that a mutant in which the glycerophosphate-modified tyrosine-32 is replaced with a phenylalanine has reduced abilities for ET and biofilm formation compared with those of the wild type. The results show the importance of the glycerophosphate-modified tyrosine for surface attachment and electron transfer in electrode- or Fe(III)-respiring G. sulfurreducens cells.


mBio ◽  
2013 ◽  
Vol 4 (3) ◽  
Author(s):  
Jonathan P. Badalamenti ◽  
Rosa Krajmalnik-Brown ◽  
César I. Torres

ABSTRACTAnode-respiring bacteria (ARB) generate electric current in microbial electrochemical cells (MXCs) by channeling electrons from the oxidation of organic substrates to an electrode. Production of high current densities by monocultures in MXCs has resulted almost exclusively from the activity ofGeobacter sulfurreducens, a neutrophilic freshwater Fe(III)-reducing bacterium and the highest-current-producing member documented for theGeobacteraceaefamily of theDeltaproteobacteria. Here we report high current densities generated by haloalkaliphilicGeoalkalibacterspp., thus broadening the capability for high anode respiration rates by including other genera within theGeobacteraceae. In this study, acetate-fed pure cultures of two relatedGeoalkalibacterspp. produced current densities of 5.0 to 8.3 and 2.4 to 3.3 A m−2under alkaline (pH 9.3) and saline (1.7% NaCl) conditions, respectively. Chronoamperometric studies of halophilicGlk. subterraneusDSM 23483 and alkaliphilicGlk. ferrihydriticusDSM 17813 suggested that cells performed long-range electron transfer through electrode-attached biofilms and not through soluble electron shuttles.Glk. ferrihydriticusalso oxidized ethanol directly to produce current, with maximum current densities of 5.7 to 7.1 A m−2and coulombic efficiencies of 84 to 95%. Cyclic voltammetry (CV) elicited a sigmoidal response with characteristic onset, midpoint, and saturation potentials, while CV performed in the absence of an electron donor suggested the involvement of redox molecules in the biofilm that were limited by diffusion. These results matched those previously reported for actively respiringGb. sulfurreducensbiofilms producing similar current densities (~5 to 9 A m−2).IMPORTANCEThis study establishes the highest current densities ever achieved by pure cultures of anode-respiring bacteria (ARB) under alkaline and saline conditions in microbial electrochemical cells (MXCs) and provides the first electrochemical characterization of the genusGeoalkalibacter. Production of high current densities among theGeobacteraceaeis no longer exclusive toGeobacter sulfurreducens, suggesting greater versatility for this family in fundamental and applied microbial electrochemical cell (MXC) research than previously considered. Additionally, this work raises the possibility that different members of theGeobacteraceaehave conserved molecular mechanisms governing respiratory extracellular electron transfer to electrodes. Thus, the capacity for high current generation may exist in other uncultivated members of this family. Advancement of MXC technology for practical uses must rely on an expanded suite of ARB capable of using different electron donors and producing high current densities under various conditions.Geoalkalibacterspp. can potentially broaden the practical capabilities of MXCs to include energy generation and waste treatment under expanded ranges of salinity and pH.


Sign in / Sign up

Export Citation Format

Share Document