scholarly journals Enhanced live cell imaging via photonic crystal enhanced fluorescence microscopy

The Analyst ◽  
2014 ◽  
Vol 139 (22) ◽  
pp. 5954-5963 ◽  
Author(s):  
Weili Chen ◽  
Kenneth D. Long ◽  
Hojeong Yu ◽  
Yafang Tan ◽  
Ji Sun Choi ◽  
...  

Photonic crystal enhanced fluorescence microscopy can provide information about the spatial distribution of cell–surface interactions at the single-cell level.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3363-3363
Author(s):  
Dominik Schnerch ◽  
Julia Felthaus ◽  
Lara Mentlein ◽  
Monika Engelhardt ◽  
Ralph M. Waesch

Abstract Abstract 3363 Proper mitotic control is a prerequisite to guarantee the equal distribution of the genetic material onto the two developing daughter cells. A mitotic key regulator is cyclin B. High levels of cyclin B facilitate entry into mitosis whereas its controlled degradation coordinates chromosome separation and cytokinesis. The latter events are coordinated by the anaphase- promoting complex / cyclosome (APC/C), a ubiquitin ligase that couples ubiquitin chains to cyclin B, mediating its proteasomal degradation. The regulation of the APC/C-activity by complex protein networks, such as the spindle assembly checkpoint, therefore presents the basis for an accurate mitosis. Mitotic errors give rise to daughter cells with an aberrant set of chromosomes and contribute to genetic instability. Genetic instability is a hallmark of cancer cells and plays an important role in the onset and progression of acute myeloid leukemia (AML). In rare cases, de novo AMLs present with multiple cytogenetic aberrations (complex karyotype). However, a larger number of patients develop karyotype deviations in the course of the disease, sometimes even under therapy, which comes along with an adverse prognosis. Understanding the biology that drives the gain and loss of genetic material therefore bears the potential of identifying new therapeutic targets. We compared a number of lymphoblastic and myeloid cell lines and found AML cell lines to be deficient in arresting at metaphase in the presence of the microtubule-disrupting agent nocodazole. Cyclin B was expressed at much lower levels in the AML cell line Kasumi-1 and did not accumulate following spindle disruption as observed in the lymphoblastic cell line DG-75. We could show that Kasumi-1 cells, when challenged with nocodazole, were not capable of properly maintaining chromatid-cohesion and underwent premature sister chromatid separation. These findings suggest that mitotic control mechanisms do not work tightly enough in AML cells to prevent chromosome separation in the presence of spindle disruption. We applied live-cell imaging to exactly characterize mitotic timing in Kasumi-1 cells at a single cell level. The expression of a GFP-tagged derivative of histone H2 served to visualize the nuclear envelope breakdown and anaphase onset. Detection of the latter events allowed the faithful measurement of mitotic timing. We could find a significant shortening of mitosis in Kasumi-1 cells as compared to the lymphoblastic cell line DG-75. In both AML cell lines and primary AML blasts we identified the spindle assembly checkpoint components BubR1 and Bub1 to be downregulated. Interestingly, re-expression of BubR1 in Kasumi-1 cells led to a significant stabilization of cyclin B on western blots. To address the question whether an increased expression of cyclin B leads to a more pronounced mitotic delay in the presence of spindle-disruption in AML cells is subject of current experiments. It was reported that different cell types can escape from a mitotic block as a consequence of cyclin B degradation. In the literature, this phenomenon was referred to as mitotic slippage and is known to drive genetic instability. To monitor cyclin B turnover and localization at a single cell level, we generated a chimeric cyclin B-molecule, SNAP-cyclin B, which can couple to a suitable fluorochrome in a self-labeling reaction after addition to the growth medium. In this system, the fluorescence intensity reflects the amount of chimeric cyclin B and allows the monitoring of APC/C-dependent proteolysis. In our current approaches we aim at studying cyclin B-turnover at a single cell level in AML cell lines as well as primary leukemia cells by using live-cell imaging before and after BubR1- and Bub1-rescue. An aberrant cell cycle control is found in most human malignancies and might be an important driving force in leukemogenesis. We hypothesize that BubR1, in concert with different other regulators, might lead to inaccuracies in mitotic control. This hypothesis is underlined by the shortened time to anaphase in Kasumi-1 cells and a decreased expression of cyclin B, both of which are characteristics of BubR1-depletion. Mitotic regulators are already targets in AML therapy and a deeper understanding of mitotic processes in AML might lead to improved approaches. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 21 (21) ◽  
pp. 7880
Author(s):  
Leonore Mensching ◽  
Sebastian Rading ◽  
Viacheslav Nikolaev ◽  
Meliha Karsak

G-protein coupled cannabinoid CB2 receptor signaling and function is primarily mediated by its inhibitory effect on adenylate cyclase. The visualization and monitoring of agonist dependent dynamic 3′,5′-cyclic adenosine monophosphate (cAMP) signaling at the single cell level is still missing for CB2 receptors. This paper presents an application of a live cell imaging while using a Förster resonance energy transfer (FRET)-based biosensor, Epac1-camps, for quantification of cAMP. We established HEK293 cells stably co-expressing human CB2 and Epac1-camps and quantified cAMP responses upon Forskolin pre-stimulation, followed by treatment with the CB2 ligands JWH-133, HU308, β-caryophyllene, or 2-arachidonoylglycerol. We could identify cells showing either an agonist dependent CB2-response as expected, cells displaying no response, and cells with constitutive receptor activity. In Epac1-CB2-HEK293 responder cells, the terpenoid β-caryophyllene significantly modified the cAMP response through CB2. For all of the tested ligands, a relatively high proportion of cells with constitutively active CB2 receptors was identified. Our method enabled the visualization of intracellular dynamic cAMP responses to the stimuli at single cell level, providing insights into the nature of heterologous CB2 expression systems that contributes to the understanding of Gαi-mediated G-Protein coupled receptor (GPCR) signaling in living cells and opens up possibilities for future investigations of endogenous CB2 responses.


2017 ◽  
Vol 9 (3) ◽  
pp. 238-247 ◽  
Author(s):  
Ariel S. Kniss-James ◽  
Catherine A. Rivet ◽  
Loice Chingozha ◽  
Hang Lu ◽  
Melissa L. Kemp

Integration of a microfluidic device with live cell imaging enables the application of control theory for analyzing features T cell signaling at the single cell level.


2011 ◽  
Vol 36 (16) ◽  
pp. 3051 ◽  
Author(s):  
Thomas Barroca ◽  
Karla Balaa ◽  
Julie Delahaye ◽  
Sandrine Lévêque-Fort ◽  
Emmanuel Fort

The Analyst ◽  
2018 ◽  
Vol 143 (22) ◽  
pp. 5559-5567 ◽  
Author(s):  
Thomas Söllradl ◽  
Kevin Chabot ◽  
Ulrike Fröhlich ◽  
Michael Canva ◽  
Paul G. Charette ◽  
...  

Validation of a combined metal-clad waveguide and surface enhanced fluorescence imaging platform for live cell imaging.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Dulanthi Weerasekera ◽  
Jonas Hahn ◽  
Martin Herrmann ◽  
Andreas Burkovski

Abstract Objectives In frame of a study to characterize the interaction of human macrophage-like cells with pathogenic corynebacteria, Corynebacterium diphtheriae and Corynebacterium ulcerans, live cell imaging experiments were carried out and time lapse fluorescence microscopy videos were generated, which are presented here. Data description The time lapse fluorescence microscopy data revealed new insights in the interaction of corynebacteria with human macrophage-like THP-1 cells. In contrast to uninfected cells and infections with non-pathogenic C. glutamicum used as a control, pathogenic C. diphtheriae and C. ulcerans showed highly detrimental effects towards human cells and induction of cell death of macrophages.


Sign in / Sign up

Export Citation Format

Share Document