Supramolecular control of organic p/n-heterojunctions by complementary hydrogen bonding

2014 ◽  
Vol 174 ◽  
pp. 297-312 ◽  
Author(s):  
Hayden T. Black ◽  
Huaping Lin ◽  
Francine Bélanger-Gariépy ◽  
Dmitrii F. Perepichka

The supramolecular structure of organic semiconductors (OSCs) is the key parameter controlling their performance in organic electronic devices, and thus methods for controlling their self-assembly in the solid state are of the upmost importance. Recently, we have demonstrated the co-assembly of p- and n-type organic semiconductors through a three-point hydrogen-bonding interaction, utilizing an electron-rich dipyrrolopyridine (P2P) heterocycle which is complementary to naphthalenediimides (NDIs) both in its electronic structure and H bonding motif. The hydrogen-bonding-mediated co-assembly between P2P donor and NDI acceptor leads to ambipolar co-crystals and provides unique structural control over their solid-state packing characteristics. In this paper we expand our discussion on the crystal engineering aspects of H bonded donor–acceptor assemblies, reporting three new single co-crystal X-ray diffraction structures and analyzing the different packing characteristics that arise from the molecular structures employed. Particular attention is given toward understanding the formation of the two general motifs observed, segregated and mixed stacks. Co-assembly of the donor and acceptor components into a single, crystalline material, allows the creation of ambipolar semiconductors where the mutual arrangement of p- and n-conductive channels is engineered by supramolecular design based on complementary H bonding.

2018 ◽  
Vol 74 (8) ◽  
pp. 1151-1154
Author(s):  
Pushpendra Singh ◽  
Harkesh B. Singh ◽  
Ray J. Butcher

In the title compound, [HgCl2(C16H28N2Se)], the primary geometry around the Se and Hg atoms is distorted trigonal–pyramidal and distorted square-pyramidal, respectively. The distortion of the molecular geometry in the complex is caused by the steric demands of the ligands attached to the Se atom. The Hg atom is coordinated through two chloride anions, an N atom and an Se atom, making up an unusual HgNSeCl2 coordination sphere with an additional long Hg...N interaction. Intermolecular C—H...Cl interactions are the only identified intermolecular hydrogen-bonding interactions that seem to be responsible for the self assembly. These relatively weak C—H...Cl hydrogen bonds possess the required linearity and donor–acceptor distances. They act as molecular associative forces that result in a supramolecular assembly along the b-axis direction in the solid state of the title compound.


1997 ◽  
Vol 50 (5) ◽  
pp. 439 ◽  
Author(s):  
Darren G. Hamilton ◽  
Daniel E. Lynch ◽  
Karl A. Byriel ◽  
Colin H. L. Kennard

Pyromellitic diimide forms orange-coloured cocrystals of 1 : 1 stoichiometry with dialkoxynaphthalene derivatives. The solid-state structures of two examples are presented. The cocrystal formed with 2,6-dimethoxynaphthalene presents vertical stacks of alternating π-rich and π-deficient subunits with the long axes of the respective components approximately parallel. Investigation of the packing in the cocrystal also reveals a stabilizing array of hydrogen bonds between the components of adjacent stacks. Cocrystallization with 1,5-[2-(2-hydroxyethoxy)ethoxy]naphthalene, a derivative bearing hydroxy terminated ethyleneoxy chains, gives rise to an altered structural arrangement. Alternating donor- acceptor stacks once again dominate the structure but adopt a geometry where the long axes of the constituents are essentially perpendicular. Hydrogen-bonding interactions result in the formation of continuous non-covalently linked columns of donor and acceptor subunits by linking the terminal hydroxy functions of the naphthalene component to the imide protons. The structural preferences revealed by these solid-state analyses indicate that these complexes are useful prototypes of more complex neutral supramolecular assemblies.


2016 ◽  
Vol 45 (9) ◽  
pp. 3974-3982 ◽  
Author(s):  
Riccardo Pettinari ◽  
Fabio Marchetti ◽  
Claudio Pettinari ◽  
Francesca Condello ◽  
Brian W. Skelton ◽  
...  

Mono- and tetranuclear Ru(ii) half-sandwich complexes containing acylpyrazolone ligands. 13C and 15N solid state NMR spectroscopy.


2018 ◽  
Vol 9 (13) ◽  
pp. 3282-3289 ◽  
Author(s):  
S. Yamamoto ◽  
J. Pirillo ◽  
Y. Hijikata ◽  
Z. Zhang ◽  
K. Awaga

Using the “crystal sponge” approach, weak organic electron donor molecules were impregnated and evenly distributed in a crystal of a metal–organic framework (MOF), with the self-assembly of the donor–acceptor pairs with electron acceptor ligands. The nanopores of the MOF confined them and induced a charge transfer phenomenon, which would not occur between donor and acceptor molecules in a bulk scale.


Tetrahedron ◽  
2012 ◽  
Vol 68 (39) ◽  
pp. 8216-8221 ◽  
Author(s):  
Wei-Jie Li ◽  
Hai-Mei Wu ◽  
Yi-Bao Li ◽  
Chao-Peng Hu ◽  
Ming-Dong Yi ◽  
...  

2016 ◽  
Vol 55 (9) ◽  
pp. 3022-3026 ◽  
Author(s):  
Masaki Shimada ◽  
Mizuho Tsuchiya ◽  
Ryota Sakamoto ◽  
Yoshinori Yamanoi ◽  
Eiji Nishibori ◽  
...  

2014 ◽  
Vol 126 (8) ◽  
pp. 2170-2174 ◽  
Author(s):  
Hayden T. Black ◽  
Dmitrii F. Perepichka

2020 ◽  
Vol 142 (31) ◽  
pp. 13469-13480 ◽  
Author(s):  
Huda Shaikh ◽  
Xu-Hui Jin ◽  
Robert L. Harniman ◽  
Robert M. Richardson ◽  
George R. Whittell ◽  
...  

1998 ◽  
Vol 1 (1) ◽  
pp. 79-85 ◽  
Author(s):  
F. Hajek ◽  
E. Graf ◽  
M.W. Hosseini ◽  
A. De Cian ◽  
J. Fischer

Sign in / Sign up

Export Citation Format

Share Document