Angelica sinensis polysaccharide regulates glucose and lipid metabolism disorder in prediabetic and streptozotocin-induced diabetic mice through the elevation of glycogen levels and reduction of inflammatory factors

2015 ◽  
Vol 6 (3) ◽  
pp. 902-909 ◽  
Author(s):  
Kaiping Wang ◽  
Peng Cao ◽  
Weizhi Shui ◽  
Qiuxiang Yang ◽  
Zhuohong Tang ◽  
...  

Hypoglycemic and hypolipidemic effects of ASP in prediabetic and T2DM mice.

2019 ◽  
Vol 51 (9) ◽  
pp. 890-899
Author(s):  
Xiaoyu Wang ◽  
Jiajie Zhou ◽  
Manlu Shen ◽  
Jiayan Shen ◽  
Xinyue Zhang ◽  
...  

Abstract Chlorpyrifos (CPF) is a widely used insecticide in pest control, and it can affect aquatic animals by contaminating the water. In this study, larval zebrafish were exposed to CPF at concentrations of 30, 100 and 300 μg/l for 7 days. In the CPF-treated group, lipid droplet accumulation was reduced in larval zebrafish. The levels of triglyceride (TG), total cholesterol (TC), and pyruvate were also decreased after CPF exposure. Cellular apoptosis were significantly increased in the heart tissue after CPF exposure compared with the control. Transcription changes in cardiovascular genes were also observed. Through transcriptome analysis, we found that the transcription of 465 genes changed significantly, with 398 upregulated and 67 downregulated in the CPF-treated group, indicating that CPF exposure altered the transcription of genes. Among these altered genes, a number of genes were closely related to the glucose and lipid metabolism pathways. Furthermore, we also confirmed that the transcription of genes related to fatty acid synthesis, TC synthesis, and lipogenesis were significantly decreased in larval zebrafish after exposure to CPF. These results indicated that CPF exposure induced lipid metabolism disorders associated with cardiovascular toxicity in larval zebrafish.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Jing Peng ◽  
Qingde Li ◽  
Keye Li ◽  
Li Zhu ◽  
Xiaoding Lin ◽  
...  

Glucose and lipid metabolism disorder in diabetes mellitus often causes damage to multiple tissues and organs. Diabetes mellitus is beneficially affected by quercetin. However, its concrete mechanisms are yet to be fully elucidated. In our study, diabetes was induced in Sprague-Dawley rats by STZ injection. The rats were randomly divided into normal control, diabetic model, low-dose quercetin treatment, high-dose quercetin treatment, and pioglitazone treatment groups. Fasting blood glucose was collected to evaluate diabetes. Immunohistochemistry and fluorometric assay were performed to explore SIRT1. Akt levels were measured through immunoprecipitation and Western blot. After 12 weeks of quercetin treatment, the biochemical parameters of glucose and lipid metabolism improved to varying degrees. Hepatic histomorphological injury was alleviated, and hepatic glycogen content was increased. The expression and activity of hepatic SIRT1 were enhanced, and Akt was activated by phosphorylation and deacetylation. These results suggested that the beneficial effects of quercetin on glucose and lipid metabolism disorder are probably associated with the upregulated activity and protein level of SIRT1 and its influence on Akt signaling pathway. Hence, quercetin shows potential for the treatment of glucose and lipid metabolism disorder in diabetes mellitus.


2021 ◽  
Vol 17 (2) ◽  
pp. 402-416
Author(s):  
Hengzhi Du ◽  
Yanru Zhao ◽  
Zhongwei Yin ◽  
Dao Wen Wang ◽  
Chen Chen

2020 ◽  
pp. 1-11
Author(s):  
Mo Wang ◽  
Huaying Xiong ◽  
Han Chen ◽  
Qiu Li ◽  
Xiong Zhong Ruan

<b><i>Background:</i></b> SARS-CoV-2 infection can cause renal involvement, and severe renal dysfunction is more common among patients with chronic comorbid conditions, especially patients with chronic kidney disease. Angiotensin-converting enzyme 2 (ACE2) has been proven to be the major receptor of SARS-CoV-2 in kidneys, suggesting that ACE2-related changes may be involved in renal injury during the infection. In this review, we systematically reviewed the literature to summarize findings on the mechanism of renal injury caused by SARS-COV-2 infection, in order to provide a theoretical basis for renal protection therapy. <b><i>Summary:</i></b> For patients with SARS-CoV-2 infection, renal injury mainly manifests as increased serum creatinine, variable degrees of proteinuria and hematuria, and radiographic abnormalities of the kidneys. In this review, we summarize the pathogenesis of renal injury deriving from SARS-CoV-2 infection by focusing on its etiology, pathology, and clinical manifestations. The virus causes kidney injury by either direct infection or systemic effects, including host immune clearance and immune tolerance disorders, endothelium-mediated vasculitis, thrombus formation, glucose and lipid metabolism disorder, and hypoxia. <b><i>Key Messages:</i></b> Renal injury by SARS-CoV-2 is the result of multiple factors. Via highly expressed ACE2 in renal tissue, SARS-CoV-2 infection fundamentally initiates a mechanism of renal injury. Systemic effects such as host immune clearance and immune tolerance disorders, endothelial cell injury, thrombus formation, glucose and lipid metabolism disorder, and hypoxia aggravate this renal injury.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Xinru Gu ◽  
Junyi Zhou ◽  
Yanyan Zhou ◽  
Hongjie Wang ◽  
Nan Si ◽  
...  

Abstract Background In recent years, excellent results have suggested an association between the “brain-gut” axis and Alzheimer’s disease (AD) progression, yet the role of the “brain-gut” axis in AD pathogenesis still remains obscure. Herein, we provided a potential link between the central and peripheral neuroinflammatory disorders in AD progression. Methods The Morris water maze (MWM) test, immunohistochemistry, ELISA, ProcartaPlex Multiplex immunoassay, multiple LC-MS/MS methods, and the V3-V4 regions of 16S rRNA genes were applied to explore potential biomarkers. Results In Tg-APP/PS1 mice, gut dysbiosis and lipid metabolism were highly associated with AD-like neuroinflammation. The combination of inflammatory factors (IL-6 and INF-γ), phosphatidylcholines (PCs) and SCFA-producing bacteria were expected to be early diagnostic biomarkers for AD. Huanglian Jiedu decoction (HLJDD) suppressed gut dysbiosis and the associated Aβ accumulation, harnessed neuroinflammation and reversed cognitive impairment. Conclusion Together, our findings highlighted the roles of neuroinflammation induced by gut dysbiosis and lipid metabolism disorder in AD progression. This integrated metabolomics approach showed its potential to understand the complex mechanisms of HLJDD in the treatment of AD.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1060-P
Author(s):  
LIXIN GUO ◽  
QI PAN ◽  
CHAO CHEN ◽  
SHUSHAN LIN ◽  
YU LI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document