Naringin protects against anoxia/reoxygenation-induced apoptosis in H9c2 cells via the Nrf2 signaling pathway

2015 ◽  
Vol 6 (4) ◽  
pp. 1331-1344 ◽  
Author(s):  
R. C. Chen ◽  
G. B. Sun ◽  
J. Wang ◽  
H. J. Zhang ◽  
X. B. Sun

Naringin (Nar) is a major and active flavanone glycoside derivative of several citrus species.

Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1268
Author(s):  
Shahid Ali Rajput ◽  
Aftab Shaukat ◽  
Kuntan Wu ◽  
Imran Rashid Rajput ◽  
Dost Muhammad Baloch ◽  
...  

Aflatoxin B1 (AFB1), a threatening mycotoxin, usually provokes oxidative stress and causes hepatotoxicity in animals and humans. Luteolin (LUTN), well-known as an active phytochemical agent, acts as a strong antioxidant. This research was designed to investigate whether LUTN exerts protective effects against AFB1-induced hepatotoxicity and explore the possible molecular mechanism in mice. A total of forty-eight mice were randomly allocated following four treatment groups (n = 12): Group 1, physiological saline (CON). Group 2, treated with 0.75 mg/kg BW aflatoxin B1 (AFB1). Group 3, treated with 50 mg/kg BW luteolin (LUTN), and Group 4, treated with 0.75 mg/kg BW aflatoxin B1 + 50 mg/kg BW luteolin (AFB1 + LUTN). Our findings revealed that LUTN treatment significantly alleviated growth retardation and rescued liver injury by relieving the pathological and serum biochemical alterations (ALT, AST, ALP, and GGT) under AFB1 exposure. LUTN ameliorated AFB1-induced oxidative stress by scavenging ROS and MDA accumulation and boosting the capacity of the antioxidant enzyme (CAT, T-SOD, GSH-Px and T-AOC). Moreover, LUTN treatment considerably attenuates the AFB1-induced apoptosis in mouse liver, as demonstrated by declined apoptotic cells percentage, decreased Bax, Cyt-c, caspase-3 and caspase-9 transcription and protein with increased Bcl-2 expression. Notably, administration of LUTN up-regulated the Nrf2 and its associated downstream molecules (HO-1, NQO1, GCLC, SOD1) at mRNA and protein levels under AFB1 exposure. Our results indicated that LUTN effectively alleviated AFB1-induced liver injury, and the underlying mechanisms were associated with the activation of the Nrf2 signaling pathway. Taken together, LUTN may serve as a potential mitigator against AFB1-induced liver injury and could be helpful for the development of novel treatment to combat liver diseases in humans and/or animals.


Antioxidants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 121 ◽  
Author(s):  
Lina Qi ◽  
Jingle Jiang ◽  
Jingfei Zhang ◽  
Lili Zhang ◽  
Tian Wang

Pregnancy complications are associated with oxidative stress induced by accumulation of trophoblastic ROS in the placenta. We employed the human trophoblast HTR8/SVneo cell line to determine the effect of curcumin pre-treatment on H2O2-induced oxidative damage in HTR8/Sveo cells. Cells were pretreated with 2.5 or 5 μM curcumin for 24 h, and then incubated with 400 μM H2O2 for another 24 h. The results showed that H2O2 decreased the cell viability and induced excessive accumulation of reactive oxygen species (ROS) in HTR8/Sveo cells. Curcumin pre-treatment effectively protected HTR8/SVneo cells against oxidative stress-induced apoptosis via increasing Bcl-2/Bax ratio and decreasing the protein expression level of cleaved-caspase 3. Moreover, curcumin pre-treatment alleviated the excessive oxidative stress by enhancing the activity of antioxidative enzymes. The antioxidant effect of curcumin was achieved by activating Nrf2 and its downstream antioxidant proteins. In addition, knockdown of Nrf2 by Nrf2-siRNA transfection abolished the protective effects of curcumin on HTR8/SVneo cells against oxidative damage. Taken together, our results show that curcumin could protect HTR8/SVneo cells from H2O2-induced oxidative stress by activating Nrf2 signaling pathway.


2020 ◽  
pp. 427-438
Author(s):  
X GAO ◽  
S ZHANG ◽  
D WANG ◽  
Y CHENG ◽  
Y JIANG ◽  
...  

(Pro)renin receptor (PRR) contributes to regulating many physiological and pathological processes; however, the role of PRR-mediated signaling pathways in myocardial ischemia/reperfusion injury (IRI) remains unclear. In this study, we used an in vitro model of hypoxia/reoxygenation (H/R) to mimic IRI and carried out PRR knockdown by siRNA and PRR overexpression using cDNA in H9c2 cells. Cell proliferation activity was examined by MTT and Cell Counting Kit-8 (CCK-8) assays. Apoptosis-related factors, autophagy markers and β-catenin pathway activity were assessed by real-time PCR and western blotting. After 24 h of hypoxia followed by 2 h of reoxygenation, the expression levels of PRR, LC3B-I/II, Beclin1, cleaved caspase-3, cleaved caspase-9 and Bax were upregulated, suggesting that apoptosis and autophagy were increased in H9c2 cells. Contrary to the effects of PRR downregulation, the overexpression of PRR inhibited proliferation, induced apoptosis, increased the expression of pro-apoptotic factors and autophagy markers, and promoted activation of the β-catenin pathway. Furthermore, all these effects were reversed by treatment with the β-catenin antagonist DKK-1. Thus, we concluded that PRR activation can trigger H/R-induced apoptosis and autophagy in H9c2 cells through the β-catenin signaling pathway, which may provide new therapeutic targets for the prevention and treatment of myocardial IRI.


2020 ◽  
pp. 074823372097942
Author(s):  
Guangtao Yang ◽  
Yingping Xiang ◽  
Wei Zhou ◽  
Xiaohuan Zhong ◽  
Yanfang Zhang ◽  
...  

The bromoalkane, 1-bromopropane (1-BP), may damage the reproductive system though oxidative stress, while the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) plays an important role in regulating intracellular antioxidant levels against oxidative stress. This study explored the role of oxidative stress and the Nrf2 signaling pathway in mediating the reproductive toxicity of 1-BP using the ovarian carcinoma cell line OVCAR-3 as an in vitro model of the human ovary. OVCAR-3 cells were treated with 1, 5, 10 and 15 mM 1-BP. After 24 h, the cellular reactive oxygen species and malondialdehyde concentrations significantly increased, while the superoxide dismutase activity decreased; translocation of Nrf2 from the cytosol to the nucleus as well as downstream protein expression of Nrf2-regulated genes heme oxygenase-1 and Bcl-2 was inhibited. Apoptosis was also observed, accompanied by increased caspase-3 and caspase-9 activity. The antioxidant vitamin C alleviated 1-BP-induced apoptosis by inhibiting caspase activity activating the Nrf2 signaling pathway. These findings suggested that 1-BP induced oxidative stress and apoptosis in OVCAR-3 cells through inactivation of Nrf2 signaling.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Hong Chang ◽  
Chun Li ◽  
Kuiyuan Huo ◽  
Qiyan Wang ◽  
Linghui Lu ◽  
...  

Introduction.Luteolin, a falconoid compound in many Chinese herbs and formula, plays important roles in cardiovascular diseases. The underlying mechanism of luteolin remains to be further elaborated.Methods. A model of hydrogen peroxide- (H2O2-) induced H9C2 cells apoptosis was established. Cell viabilities were examined with an MTT assay.2′,7′-Dichlorofluorescin diacetate (DCFH-DA) and flow cytometry were used to detect ROS level and apoptosis rate, respectively. The expressions of signaling proteins related to apoptosis were analyzed by western blot and mRNA levels were detected by real-time polymerase chain reaction (PCR). Quercetin was applied as positive drug.Results. Incubation with various concentrations of H2O2(0, 50, 100, and 200 μM) for 1 h caused dose-dependent loss of cell viability and 100 μM H2O2reduced the cell viability to approximately 50%. Treatments with luteolin and quercetin protected cells from H2O2-induced cytotoxicity and reduced cellular ROS level and apoptosis rate. Moreover, luteolin could downregulate the expressions of Bax, caspase-8, cleaved-caspase-3, and p53 in apoptotic signaling pathway. Further study showed that the expressions of Akt, Bcl-2, and Mdm2 were upregulated by luteolin.Conclusion. Luteolin protects H9C2 cells from H2O2-induced apoptosis. The protective and antiapoptotic effects of luteolin could be mediated by regulating the Akt-P53/Mdm2 apoptotic pathway.


Sign in / Sign up

Export Citation Format

Share Document