scholarly journals Involvement of secondary metabolites in the pathogenesis of the American foulbrood of honey bees caused by Paenibacillus larvae

2015 ◽  
Vol 32 (6) ◽  
pp. 765-778 ◽  
Author(s):  
Sebastian Müller ◽  
Eva Garcia-Gonzalez ◽  
Elke Genersch ◽  
Roderich D. Süssmuth

The Gram-positive spore-forming bacterium Paenibacillus larvae is the causative agent of the fatal disease American Foulbrood of the western honey bee. This article highlights recent findings on secondary metabolites synthesized by P. larvae.

Apidologie ◽  
2017 ◽  
Vol 48 (3) ◽  
pp. 387-400 ◽  
Author(s):  
Rosa Maria Alonso-Salces ◽  
Noelia Melina Cugnata ◽  
Elisa Guaspari ◽  
Maria Celeste Pellegrini ◽  
Inés Aubone ◽  
...  

2019 ◽  
Vol 43 (25) ◽  
pp. 10109-10117 ◽  
Author(s):  
Diego Rodríguez-Hernández ◽  
Weilan G. P. Melo ◽  
Carla Menegatti ◽  
Vitor B. Lourenzon ◽  
Fábio S. do Nascimento ◽  
...  

Strong activity against the bacteria Paenibacillus larvae ATCC9545, the causative agent of the American Foulbrood disease of honey bees.


2012 ◽  
Vol 8 (5) ◽  
pp. e1002716 ◽  
Author(s):  
Lena Poppinga ◽  
Bettina Janesch ◽  
Anne Fünfhaus ◽  
Gerhard Sekot ◽  
Eva Garcia-Gonzalez ◽  
...  

2021 ◽  
Author(s):  
◽  
Samantha Amy Montrose Graham

<p>Though the honey bee (Apis mellifera) is exposed to an extensive diversity of parasites and pathogens from multiple kingdoms, few are as devastating as American foulbrood. American foulbrood is a highly contagious bacterial disease, of which the causative agent (bacterium Paenibacillus larvae) infects honey bee brood through the ingestion of its spores, ultimately leading to the death of the infected larva and the collapse of the infected hive. Paenibacillus larvae’s genotypes (ERIC I-IV) exhibit differing ‘killing time’ of infected larvae, resulting in different larval and colony level virulence of the disease within hives.  American foulbrood is found in New Zealand’s registered hives, and poses a threat to the country’s apiculture industry. The first objective of this thesis was to perform a genetic analysis on New Zealand’s P. larvae field strains using the well-established methodology of rep-PCR with MBO REP1 primers. A total of 172 bacteria isolates were gathered from registered hives from 2011 to 2014 and examined. The MBO REP1 primer identifies the ‘beta’ genetic subgroups of P. larvae. By identifying beta subgroups, the ERIC genotypes that are present in New Zealand can also be concluded. The genetic analysis of P. larvae using rep-PCR is a first for New Zealand, and appears to be a first for Australasia. The second objective of this thesis was to conduct a temporal and geographical statistical analysis on American foulbrood infection rate trends in New Zealand’s national and regional, divided into seven regions, registered hives and apiaries from 1994 to 2013.  The genetic analysis of P. larvae detected three ‘beta’ genotypic subgroups: B, b, and Б. From these findings it was concluded that ERIC I and ERIC II are present in New Zealand. Previous to my findings, subgroup B and Б and ERIC II genotype had not been recorded outside of Europe. The statistical analysis reported that American foulbrood infection rates were significantly decreasing nationally. Results also reported that four of the seven regions’ infection rates were significantly decreasing, whilst three regions were significantly increasing.  Conclusions on the subgroups and genotypes present in New Zealand gives the first insight to the virulence and occurrence of P. larvae strains. Additionally, the use of rep-PCR for the genetic analysis of P. larvae enables this thesis to contribute to the increasing knowledge on American foulbrood. By examining the temporal and geographic dynamics of American foulbrood, the results allow for the evaluation of current management strategies and the most recent understanding on the national and regional infection rates of the disease.</p>


2021 ◽  
Author(s):  
◽  
Samantha Amy Montrose Graham

<p>Though the honey bee (Apis mellifera) is exposed to an extensive diversity of parasites and pathogens from multiple kingdoms, few are as devastating as American foulbrood. American foulbrood is a highly contagious bacterial disease, of which the causative agent (bacterium Paenibacillus larvae) infects honey bee brood through the ingestion of its spores, ultimately leading to the death of the infected larva and the collapse of the infected hive. Paenibacillus larvae’s genotypes (ERIC I-IV) exhibit differing ‘killing time’ of infected larvae, resulting in different larval and colony level virulence of the disease within hives.  American foulbrood is found in New Zealand’s registered hives, and poses a threat to the country’s apiculture industry. The first objective of this thesis was to perform a genetic analysis on New Zealand’s P. larvae field strains using the well-established methodology of rep-PCR with MBO REP1 primers. A total of 172 bacteria isolates were gathered from registered hives from 2011 to 2014 and examined. The MBO REP1 primer identifies the ‘beta’ genetic subgroups of P. larvae. By identifying beta subgroups, the ERIC genotypes that are present in New Zealand can also be concluded. The genetic analysis of P. larvae using rep-PCR is a first for New Zealand, and appears to be a first for Australasia. The second objective of this thesis was to conduct a temporal and geographical statistical analysis on American foulbrood infection rate trends in New Zealand’s national and regional, divided into seven regions, registered hives and apiaries from 1994 to 2013.  The genetic analysis of P. larvae detected three ‘beta’ genotypic subgroups: B, b, and Б. From these findings it was concluded that ERIC I and ERIC II are present in New Zealand. Previous to my findings, subgroup B and Б and ERIC II genotype had not been recorded outside of Europe. The statistical analysis reported that American foulbrood infection rates were significantly decreasing nationally. Results also reported that four of the seven regions’ infection rates were significantly decreasing, whilst three regions were significantly increasing.  Conclusions on the subgroups and genotypes present in New Zealand gives the first insight to the virulence and occurrence of P. larvae strains. Additionally, the use of rep-PCR for the genetic analysis of P. larvae enables this thesis to contribute to the increasing knowledge on American foulbrood. By examining the temporal and geographic dynamics of American foulbrood, the results allow for the evaluation of current management strategies and the most recent understanding on the national and regional infection rates of the disease.</p>


2017 ◽  
Vol 37 (03) ◽  
pp. 137-148 ◽  
Author(s):  
Mohammad Javed Ansari ◽  
Ahmad Al-Ghamdi ◽  
Adgaba Nuru ◽  
Ashraf Mohamed Ahmed ◽  
Tahany H. Ayaad ◽  
...  

AbstractApis mellifera jemenitica, the only indigenous honey bee race of Saudi Arabia, is well adapted to the harsh local environmental conditions. A large-scale field survey was conducted to screen major Saudi Arabian beekeeping locations for infection byPaenibacillus larvae. Paenibacillus larvaeis one of the major bacterial pathogens of honey bee broods and is the causative agent of American foulbrood disease. Larvae from samples suspected of infection were collected from different apiaries and homogenized in phosphate-buffered saline. Bacteria were isolated on MYPGP agar medium. Two bacterial isolates, ksuPL3 and ksuPL5 (16S rRNA GenBank accession numbers, KR780760 and KR780761, respectively), were subjected to molecular identification usingP. larvae-specific primers. A BLAST sequence analysis revealed that the two isolates wereP. larvaewith more than 98% sequence identity. This detection ofP. larvaein the indigenous honey bee is the first recorded incidence of this pathogen in Saudi Arabia. This study emphasizes the need for the relevant authorities to take immediate steps towards treating and limiting the spread of this disease throughout the country.


2016 ◽  
Vol 4 (1) ◽  
Author(s):  
J. Abraham ◽  
A.-C. Bousquet ◽  
E. Bruff ◽  
N. Carson ◽  
A. Clark ◽  
...  

Paenibacillus larvae bacteriophage Tripp was isolated from an American foulbrood diseased honey bee hive in North Carolina, USA. The 54,439-bp genome is 48.3% G+C, encodes 92 proteins, no tRNAs, and has 378-bp direct terminal repeats. It is currently unique in Genbank.


2008 ◽  
Vol 99 (1) ◽  
pp. 8-13 ◽  
Author(s):  
Sang-Hoon Han ◽  
Do-Bu Lee ◽  
Dong-Woo Lee ◽  
Eul-Hwan Kim ◽  
Byoung-Su Yoon

2012 ◽  
Vol 56 (4) ◽  
pp. 539-545 ◽  
Author(s):  
Krystyna Pohorecka ◽  
Marta Skubida ◽  
Andrzej Bober ◽  
Dagmara Zdańska

Abstract Screening of the prevalence of Paenibacillus larvae spores in honey bee colonies in apiaries from 162 districts, belonging to nine provinces was carried out during 2009-2011. The honey samples were examined by the use of a culture method. Based on the number of CFUs grown on Columbia sheep blood agar medium, the level of infection and probability of American foulbrood outbreak was estimated. Altogether, 6,510 pooled honey samples from 32,550 bee colonies located in 2,294 apiaries were collected. P. larvae was identified in 45% of the surveyed apiaries. The widest distribution of P. larvae was found in the Małopolskie province. Culture-positive honey samples were obtained for 71% of the apiaries and in a half of them, the level of spores was high. In the Warmińsko-Mazurskie province, the presence of the bacterium was detected in 58% of the apiaries. In the remaining provinces, from 26% to 47% of the apiaries were contaminated with P. larvae spores


Sign in / Sign up

Export Citation Format

Share Document