scholarly journals High performance multi-core iron oxide nanoparticles for magnetic hyperthermia: microwave synthesis, and the role of core-to-core interactions

Nanoscale ◽  
2015 ◽  
Vol 7 (5) ◽  
pp. 1768-1775 ◽  
Author(s):  
C. Blanco-Andujar ◽  
D. Ortega ◽  
P. Southern ◽  
Q. A. Pankhurst ◽  
N. T. K. Thanh

Controlled synthesis of multicore magnetic nanoparticles reveals that optimum heating is obtained when the cores are comparatively large and few, minimising the core–core interactions that inhibit hyperthermia.

2017 ◽  
Vol 54 (4) ◽  
pp. 630-634
Author(s):  
Carmen Stavarache ◽  
Mircea Vinatoru ◽  
Timothy Mason ◽  
Larysa Paniwnyk

Polyelectrolyte multilayer capsules are synthesized comprising of 12 total layers each containing a single layer of iron oxide nanoparticles in shells 4, 6, 8 or 10. A protein-labelled dye is embedded in the calcium carbonate template core as a model for the encapsulation of a drug. The core is dissolved after 6 layers are formed. Two types of magnetic nanoparticles are incorporated into various capsule shells: ferric oxide (Fe2O3, 50 nm) and iron oxide (Fe3O4, 15 nm), a 1:1 (vol.) mixture of the two types of nanoparticles suspensions is also used. Nanoparticle inclusion reduces the capsule sizes in all cases with the order of effect Fe3O4 [ Fe2O3 [ Fe2O3/Fe3O4 mixture. When Fe3O4 or a Fe2O3/Fe3O4 mixture is incorporated in layer 6 the reduction in size of the final capsules is less than expected. The number of surviving capsules containing nanoparticles are lower than control regardless of which of the nanoparticles is used but here the effect of Fe3O4 or a mixture of the two types of nanoparticles incorporated in layer 6 was slightly out of step. The amount of iron incorporated is almost the same regardless of which shell the nanoparticles were incorporated but the iron content using 50 nm nanoparticles is generally slightly higher than that obtained with 15 nm nanoparticles.


SPIN ◽  
2019 ◽  
Vol 09 (02) ◽  
pp. 1940001 ◽  
Author(s):  
N. A. Usov

Assemblies of magnetic nanoparticles show a great potential for application in biomedicine, particularly, magnetic hyperthermia. However, to achieve desired therapeutic effect in magnetic hyperthermia, the assembly of nanoparticles should have a sufficiently high specific absorption rate (SAR) in alternating magnetic field of moderate amplitude and frequency. Using the Landau–Lifshitz stochastic equation, it is shown that dilute assemblies of iron oxide nanoparticles of optimal diameters are capable of providing SAR of the order of 400–600[Formula: see text]W/g in alternating magnetic field with the amplitude [Formula: see text][Formula: see text]Oe in the frequency range f = 300–500[Formula: see text]kHz. Unfortunately, in dense clusters of magnetic nanoparticles, which are often formed in a biological medium, there is a sharp decrease in SAR due to the influence of strong magneto-dipole interaction of closest nanoparticles. To overcome this difficulty, it is suggested covering the nanoparticles with nonmagnetic shells of sufficient thickness or using non-single-domain nanoparticles being in magnetization curling states.


2017 ◽  
Vol 17 (5) ◽  
pp. 2323-2332 ◽  
Author(s):  
Ilona S. Smolkova ◽  
Natalia E. Kazantseva ◽  
Vladimir Babayan ◽  
Jarmila Vilcakova ◽  
Nadezda Pizurova ◽  
...  

2021 ◽  
Author(s):  
Nguyen Hoang Nam

Multifunctional silver nanoparticles have attracted widely due to their potential applications. Based on the properties of individual silver nanoparticles, such as plasmonic and antibacterial properties, silver nanoparticles can become multifunctional by surface modifications with various surfactants or they can be combined in core-shell and composite structures with the magnetic nanoparticles to form bifunctional nanoparticles. After reviewing the methods of synthesis and applications of silver nanoparticles, the chapter describes the synthesis and the properties of the new types of multifunctional silver nanomaterials based on the plasmonic behaviors of silver nanoparticles and the iron oxide Fe3O4 superparamagnetic nanoparticles. One type is a simple combination of silver nanoparticles and iron oxide nanoparticles in a silica matrix Fe3O4/Ag-4ATP@SiO2. Other types are the core-shell structured nanoparticles, where Fe3O4 nanoparticles play as the core and silver nanoparticles are the outer shell, so-called Fe3O4@SiO2-Ag and Fe3O4-Ag. In the Fe3O4@SiO2-Ag, silver nanoparticles are reduced on the surface of silica-coated magnetic core, while in Fe3O4-Ag, silver nanoparticles are directly reduced on the amino groups functionalized on the surface of magnetic nanoparticles without coating with silica. Both of types of the multifunctional silver nanoparticles show the plasmonic and magnetic properties similar as the individual silver and iron oxide nanoparticles. Finally, some applications of those multifunctional silver nanoparticles will be discussed.


2018 ◽  
Vol 8 (8) ◽  
pp. 1241 ◽  
Author(s):  
Cindy Yadel ◽  
Aude Michel ◽  
Sandra Casale ◽  
Jerome Fresnais

Iron oxide nanoparticles are intended to be used in bio-applications for drug delivery associated with hyperthermia. However, their interactions with complex media often induces aggregation, and thus a detrimental decrease of their heating efficiency. We have investigated the role of iron oxide nanoparticles dispersion into dense aggregates composed with magnetic/non-magnetic nanoparticles and showed that, when iron oxide nanoparticles were well-distributed into the aggregates, the specific absorption rate reached 79% of the value measured for the well-dispersed case. This study should have a strong impact on the applications of magnetic nanoparticles into nanostructured materials for therapy or catalysis applications.


2020 ◽  
Vol 10 (2) ◽  
pp. 166-174
Author(s):  
Mehdi Khoshneviszadeh ◽  
Sarah Zargarnezhad ◽  
Younes Ghasemi ◽  
Ahmad Gholami

Background: Magnetic cell immobilization has been introduced as a novel, facile and highly efficient approach for cell separation. A stable attachment between bacterial cell wall with superparamagnetic iron oxide nanoparticles (SPIONs) would enable the microorganisms to be affected by an outer magnetic field. At high concentrations, SPIONs produce reactive oxygen species in cytoplasm, which induce apoptosis or necrosis in microorganisms. Choosing a proper surface coating could cover the defects and increase the efficiency. Methods: In this study, asparagine, APTES, lipo-amino acid and PEG surface modified SPIONs was synthesized by co-precipitation method and characterized by FTIR, TEM, VSM, XRD, DLS techniques. Then, their protective effects against four Gram-positive and Gram-negative bacterial strains including Enterococcus faecalis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa were examined through microdilution broth and compared to naked SPION. Results: The evaluation of characterization results showed that functionalization of magnetic nanoparticles could change their MS value, size and surface charges. Also, the microbial analysis revealed that lipo-amino acid coated magnetic nanoparticles has the least adverse effect on microbial strain among tested SPIONs. Conclusion: This study showed lipo-amino acid could be considered as the most protective and even promotive surface coating, which is explained by its optimizing effect on cell penetration and negligible reductive effects on magnetic properties of SPIONs. lipo-amino acid coated magnetic nanoparticles could be used in microbial biotechnology and industrial microbiology.


Nano Select ◽  
2021 ◽  
Author(s):  
Ramis Arbi ◽  
Amr Ibrahim ◽  
Liora Goldring‐Vandergeest ◽  
Kunyu Liang ◽  
Greg Hanta ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document