scholarly journals Understanding the conductive channel evolution in Na:WO3−x-based planar devices

Nanoscale ◽  
2015 ◽  
Vol 7 (14) ◽  
pp. 6023-6030 ◽  
Author(s):  
Dashan Shang ◽  
Peining Li ◽  
Tao Wang ◽  
Egidio Carria ◽  
Jirong Sun ◽  
...  

The conductive channel evolution in Na:WO3−xfilms is visualized byin situoptical imaging combined with near-field infrared imaging techniques.

1996 ◽  
Author(s):  
J. Will ◽  
J. Norgard ◽  
C. Stubenrauch ◽  
M. Seifert

2006 ◽  
Vol 95 (3) ◽  
pp. 1982-1991 ◽  
Author(s):  
Jonathan A. N. Fisher ◽  
Vitaliy A. Marchenko ◽  
Arjun G. Yodh ◽  
Robert F. Rogers

One of the most important brain rhythms is that which generates involuntary breathing movements. The lower brain stem contains neural circuitry for respiratory rhythm generation in mammals. To date, microsectioning and selective lesioning studies have revealed anatomical regions necessary for respiratory rhythmogenesis. Although respiratory neurons distributed within these regions can be identified by their firing patterns in different phases of the respiratory cycle, conventional electrophysiology techniques have limited the study of spatial organization within this network. Optical imaging techniques offer the potential for monitoring the spatiotemporal activity of large groups of neurons simultaneously. Using high-speed voltage-sensitive dye imaging and spatial correlation analysis in an arterially perfused in situ preparation of the juvenile rat, we determined the spatial distribution of respiratory neuronal activity in a region of the ventrolateral respiratory group containing the pre-Bötzinger complex (pBC) during spontaneous eupneic breathing. While distinctly pre- and postinspiratory-related responses were spatially localizable on length scales less than 100 μm, we found the studied area on whole exhibited a spatial mixture of phase-spanning and postinspiratory-related activity. Additionally, optical recordings revealed significant widespread hyperpolarization, suggesting inhibition in the same region during expiration. This finding is consistent with the hypothesis that inhibitory neurons play a crucial role in the inspiration-expiration phase transition in the pBC. To our knowledge this is the first optical imaging of a near fully intact in situ preparation that exhibits both eupneic respiratory activity and functional reflexes.


Nanophotonics ◽  
2014 ◽  
Vol 3 (1-2) ◽  
pp. 51-59 ◽  
Author(s):  
Mily Bhattacharya ◽  
Samrat Mukhopadhyay

AbstractTechnological breakthroughs in the super-resolution optical imaging techniques have enriched our current understanding of a range of biological systems and biomolecular processes at the nanoscopic spatial resolution. Protein amyloids are an important class of ordered protein assemblies consisting of misfolded proteins that are implicated in a wide range of devastating human diseases. In order to decipher the structural basis of the supramolecular protein assembly in amyloids and their detrimental interactions with the cell membranes, it is important to employ high-resolution optical imaging techniques. Additionally, amyloids could serve as novel biological nanomaterials for a variety of potential applications. In this review, we summarize a few examples of the utility of near-field scanning optical imaging methodologies to obtain a wealth of structural information into the nanoscale amyloid assembly. Although the near-field technologies were developed several decades ago, it is only recently that these methodologies are being applied and adapted for amyloid research to yield novel information pertaining to the exciting nanoscopic world of protein aggregates. We believe that the account on the nanophotonics of amyloids described in this review will be useful for the future studies on the biophysics of amyloids.


Author(s):  
J. Liu ◽  
M. Pan ◽  
G. E. Spinnler

Small metal particles have peculiar chemical and physical properties as compared to bulk materials. They are especially important in catalysis since metal particles are common constituents of supported catalysts. The structural characterization of small particles is of primary importance for the understanding of structure-catalytic activity relationships. The shape and size of metal particles larger than approximately 5 nm in diameter can be determined by several imaging techniques. It is difficult, however, to deduce the shape of smaller metal particles. Coherent electron nanodiffraction (CEND) patterns from nano particles contain information about the particle size, shape, structure and defects etc. As part of an on-going program of STEM characterization of supported catalysts we report some preliminary results of CEND study of Ag nano particles, deposited in situ in a UHV STEM instrument, and compare the experimental results with full dynamical simulations in order to extract information about the shape of Ag nano particles.


2018 ◽  
Author(s):  
Devon Jakob ◽  
Le Wang ◽  
Haomin Wang ◽  
Xiaoji Xu

<p>In situ measurements of the chemical compositions and mechanical properties of kerogen help understand the formation, transformation, and utilization of organic matter in the oil shale at the nanoscale. However, the optical diffraction limit prevents attainment of nanoscale resolution using conventional spectroscopy and microscopy. Here, we utilize peak force infrared (PFIR) microscopy for multimodal characterization of kerogen in oil shale. The PFIR provides correlative infrared imaging, mechanical mapping, and broadband infrared spectroscopy capability with 6 nm spatial resolution. We observed nanoscale heterogeneity in the chemical composition, aromaticity, and maturity of the kerogens from oil shales from Eagle Ford shale play in Texas. The kerogen aromaticity positively correlates with the local mechanical moduli of the surrounding inorganic matrix, manifesting the Le Chatelier’s principle. In situ spectro-mechanical characterization of oil shale will yield valuable insight for geochemical and geomechanical modeling on the origin and transformation of kerogen in the oil shale.</p>


Sign in / Sign up

Export Citation Format

Share Document