conductive channel
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 26)

H-INDEX

10
(FIVE YEARS 3)

2022 ◽  
Vol 2152 (1) ◽  
pp. 012031
Author(s):  
Weijie Gou ◽  
Lihong Wang

Abstract A high-speed camera is used to observe the arc starting and arc stabilization process of the TIG-MIG hybrid welding system. Paschen’s law is used to analyze the path of TIG welding arc breakdown under the condition of the conductive channel provided by the MIG welding arc, and the arc starting process of the double arc hybrid welding is determined. The study found that when the electrode spacing is less than 8.5 mm, two molten pools can form a common molten pool after arc initiation of MIG welding; when the spacing is 10 mm, the two molten pools after arc initiation form a “8” shape; When the distance is 12 mm, there is a low temperature zone between the two arcs, which is separated.


2021 ◽  
Author(s):  
Liming Liu ◽  
Zeli Wang ◽  
Tianyi Zhang ◽  
Xianli Ba

Abstract Triple-wire gas indirect arc welding (TW-GIA) has the advantages of low heat input and high deposition rate. However, the simultaneous melting of triple wires makes the metal transfer mode complicated. The unknown of the metal transfer mode restricts the development of this technology. In this paper, high-speed camera systems and electrical signal acquisition sensors were used to explore the TW-GIA metal transfer mode. The static force model and the arc conductive channel model were used to discuss the droplet force and energy conversion characteristics respectively. Results showed that the TW-GIA metal transfer modes can be divided into: short-circuit transfer (SCT), main wire projected transfer + side wire globular transfer (PGT), main wire streaming transfer + side wire projected transfer (SPT) and main wire streaming transfer + side wire streaming transfer (SST). Moreover, the process parameter ranges corresponding to the four modes were summarized. Due to the stable arc and the uniform metal transfer process, SPT and SST can form desirable weld seam. The gravity and z-axis components of electromagnetic force are the main forces that promote metal transfer. The x-axis and y-axis components of the electromagnetic force deviate the metal transfer path from the arc coverage. Due to the change of arc conductive channel, the energy transferred from TW-GIA to the base metal is less than that of GMAW, showing the advantages of small welding deformation, narrow heat affected zone and grain refinement.


2021 ◽  
Author(s):  
Yuichi Umegawa ◽  
Tomoya Yamamoto ◽  
Mayank Dixit ◽  
Kosuke Funahashi ◽  
Sangjae Seo ◽  
...  

Amphotericin B, a long-used antifungal drug, forms fungicidal ion-permeable channels across cell membranes. Using solid-state nuclear magnetic resonance spectroscopy and molecular dynamics simulations, we experimentally elucidated the three-dimensional structure of the molecular assemblies formed by this drug in membranes in the presence of the fungal sterol, ergosterol. A stable assembly of seven drug molecules was observed to form an ion conductive channel. The structure somewhat resembled the upper half of the barrel-stave model proposed in the 1970s but different substantially in the number of molecules and their arrangement. Based on the structure obtained, the aggregation of the channel assemblies in membranes was investigated and a mechanism was proposed in which complexation with ergosterol stabilizes the drug’s assemblies, leading to their aggregation, and in turn enhancing channel activity. The high-resolution structure is consistent with many previous findings, including structure-activity relationships of the drug, and the channel aggregation provides a more reasonable explanation for the selective toxicity of this drug to fungi.


Author(s):  
Milinda Wasala ◽  
Prasanna Patil ◽  
Sujoy Ghosh ◽  
Lincoln Weber ◽  
Sidong Lei ◽  
...  

Abstract Understanding and optimizing the properties of photoactive two-dimensional (2D) Van der Waals solids is crucial for developing optoelectronics applications. The main goal of this work is to present a detailed investigation of layer dependent photoconductive behavior of InSe based field-effect transistors (FETs). InSe based FETs with five different channel thicknesses (t, 20nm < t < 100nm) were investigated with a continuous laser source of λ = 658 nm (1.88 eV) over a wide range of illumination power (P) of 22.8 nW < P < 1.29 μW. All the devices studied showed signatures of photogating; however, our investigations suggest that the photoresponsivities are strongly dependent on the thickness of the conductive channel. A correlation between the field-effect mobility (µFE) values (as a function of channel thickness, t) and photoresponsivity (R) indicates that in general R increases with increasing µFE (decreasing t) and vice versa. Maximum responsivities of ∼ 7.84 A/W and ∼ 0.59 A/W were obtained the devices with t = 20nm and t = 100nm, respectively. These values could substantially increase under the application of a gate voltage. The structure-property correlation-based studies presented here indicate the possibility of tuning the optical properties of InSe based photo-FETs for a variety of applications related to photodetector and/or active layers in solar cells.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 642
Author(s):  
Zetao Zhu ◽  
Takao Yasui ◽  
Quanli Liu ◽  
Kazuki Nagashima ◽  
Tsunaki Takahashi ◽  
...  

Field-effect transistors (FETs) are attractive biosensor platforms for rapid and accurate detection of various analytes through surface immobilization of specific bio-receptors. Since it is difficult to maintain the electrical stability of semiconductors of sensing channel under physiological conditions for long periods, passivation by a stable metal oxide dielectric layer, such as Al2O3 or HfO2, is currently used as a common method to prevent damage. However, protecting the sensing channel by passivation has the disadvantage that the distance between the target and the conductive channel increases, and the sensing signal will be degraded by Debye shielding. Even though many efforts use semiconductor materials directly as channels for biosensors, the electrical stability of semiconductors in the physiological environments has rarely been studied. In this work, an In2O3 nanolines FET device with high robustness in artificial physiological solution of phosphate buffered saline (PBS) was fabricated and used as a platform for biosensors without employing passivation on the sensing channel. The FET device demonstrated reproducibility with an average threshold voltage (VTH) of 5.235 V and a standard deviation (SD) of 0.382 V. We tested the robustness of the In2O3 nanolines FET device in PBS solution and found that the device had a long-term electrical stability in PBS with more than 9 days’ exposure. Finally, we demonstrated its applicability as a biosensor platform by testing the biosensing performance towards miR-21 targets after immobilizing the phosphonic acid terminated DNA probes. Since the surface immobilization of multiple bioreceptors is feasible, we demonstrate that the robust In2O3 FET device can be an excellent biosensor platform for biosensors.


Sign in / Sign up

Export Citation Format

Share Document