A single colorimetric sensor for multiple target ions: the simultaneous detection of Fe2+ and Cu2+ in aqueous media

RSC Advances ◽  
2014 ◽  
Vol 4 (43) ◽  
pp. 22463-22469 ◽  
Author(s):  
Hyun Kim ◽  
Yu Jeong Na ◽  
Eun Joo Song ◽  
Kyung Beom Kim ◽  
Jeong Mi Bae ◽  
...  

The receptor 1 provides a novel approach for the simultaneous colorimetric recognition of two metal ions Fe2+ and Cu2+.

2014 ◽  
Vol 202 ◽  
pp. 645-655 ◽  
Author(s):  
Ga Rim You ◽  
Gyeong Jin Park ◽  
Seul Ah Lee ◽  
Ye Won Choi ◽  
Yong Sung Kim ◽  
...  

2019 ◽  
pp. 1-8
Author(s):  
F. S. Nworie ◽  
S. O. Ngele ◽  
J. C. Onah

Metal ions present in waste samples, industrial effluents, acid mines and other aqueous media constitute a serious challenge in different human activities. Solvent extraction a technique for preconcentration, separation and identification of trace amount of metal ions coupled with multivariate chemometric technique was used for the determination of Fe(II) and Cr(III) from solutions in the presence of bis(salicylidene)ethylenediamine (SALEN). The influence of main extraction variables affecting the extraction efficiency was simultaneously studied and regression model equations illustrating the relationship between variables predicted. The extraction parameters (time of extraction, acid concentration, ligand concentration, temperature and metal concentration) were optimized using experimental designs with the contributions of the various parameters to extraction of the metal ions bound to the complexone evaluated using SPSS19.0 software. The statistically determined simulated models for the parameters were R2 = 0.946, 0.727, 0.793, 0.53, 0.53, 1.000 and F- values of 70.400, 13. 285, 15.348, 4.646 and 2.569×105 respectively for time of extraction, acid concentration, ligand concentration, temperature and metal concentration for Cr (III). For Fe (II), R2 = 0.243, 0.371, 0.519, 0.446, 1.000 and F-values of 0.964, 2.953, 4.310, 3.216 and 2.516×105 for time of extraction, acid concentration, ligand concentration, temperature and metal concentration respectively. The level of significance of the models as predicted was both lower than 5% making it feasible, efficient, reproducible and accurate. This means that metal ions at the conditions stated could be removed from waste samples, industrial effluents, acid mines and other aqueous media with extension in industrial scale application.


2021 ◽  
Vol 56 (13) ◽  
pp. 8172-8185
Author(s):  
Manh B. Nguyen ◽  
Dau Thi Ngoc Nga ◽  
Vu Thi Thu ◽  
Benoît Piro ◽  
Thuan Nguyen Pham Truong ◽  
...  

Genetics ◽  
2021 ◽  
Author(s):  
Jonas Wallin ◽  
Małgorzata Bogdan ◽  
Piotr A Szulc ◽  
R W Doerge ◽  
David O Siegmund

Abstract Ghost quantitative trait loci (QTL) are the false discoveries in QTL mapping, that arise due to the “accumulation” of the polygenic effects, uniformly distributed over the genome. The locations on the chromosome that are strongly correlated with the total of the polygenic effects depend on a specific sample correlation structure determined by the genotypes at all loci. The problem is particularly severe when the same genotypes are used to study multiple QTL, e.g. using recombinant inbred lines or studying the expression QTL. In this case, the ghost QTL phenomenon can lead to false hotspots, where multiple QTL show apparent linkage to the same locus. We illustrate the problem using the classic backcross design and suggest that it can be solved by the application of the extended mixed effect model, where the random effects are allowed to have a nonzero mean. We provide formulas for estimating the thresholds for the corresponding t-test statistics and use them in the stepwise selection strategy, which allows for a simultaneous detection of several QTL. Extensive simulation studies illustrate that our approach eliminates ghost QTL/false hotspots, while preserving a high power of true QTL detection.


Author(s):  
Yuqi Zhang ◽  
Wang Wang ◽  
Ran Li ◽  
Ensheng Zhang ◽  
Zhonghua Li ◽  
...  

3 Biotech ◽  
2015 ◽  
Vol 5 (5) ◽  
pp. 791-798 ◽  
Author(s):  
Vijay Kumar ◽  
Virender Kumar ◽  
Niraj Upadhyay ◽  
Sitansh Sharma

2017 ◽  
Vol 100 (2) ◽  
pp. 560-565 ◽  
Author(s):  
Jibran Iqbal ◽  
Yiping Du ◽  
Fares Howari ◽  
Mahmoud Bataineh ◽  
Nawshad Muhammad ◽  
...  

Abstract Sensitive detection of heavy metal ions in water is of great importance considering the effects that heavy metals have on public health. A developed fluidized bed enrichment technique was used to concentrate and detect low concentrations of Cu2+, Co2+, and Ni2+ in water samples by near-IR diffuse reflectance (NIDR) spectroscopy (NIDRS) directly without using any chemicals or reagents. The NIDR spectraof adsorbent were measured on-line, and quantitative detection was achieved by applying a built partial least-squares chemometric model. Sensitivity and accuracy was improved significantly because large-volume mixture solutions were used in the enrichment process. Root mean square error of cross-validation values for Cu2+, Co2+, and Ni2+ were 0.29, 0.41, and 0.35 μg/mL, respectively, with mean relative error values in the acceptable range of 6.56–10.27%. This study confirms the potential application of fluidized bed enrichment combined with NIDRS and chemometrics for the simultaneous detection of trace heavy metal ions in water, with low relative error.


Sign in / Sign up

Export Citation Format

Share Document