scholarly journals Room temperature ionic liquids in a heat treatment process for metals

RSC Advances ◽  
2014 ◽  
Vol 4 (98) ◽  
pp. 55077-55081 ◽  
Author(s):  
C. Schmidt ◽  
M. Beck ◽  
M. Ahrenberg ◽  
C. Schick ◽  
O. Keßler ◽  
...  
Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1271
Author(s):  
Tingwei Ma ◽  
Xianchao Hao ◽  
Ping Wang

In this study, the phase transformation temperature of 15Cr12MoVWN ferritic/martensitic steel was determined by differential scanning calorimetry to provide a theoretical basis for the design of a heat treatment process. An orthogonal design experiment was performed to investigate the relationship between microstructure and heat treatment parameters, i.e., normalizing temperature, cooling method and tempering temperature by evaluating the room-temperature and elevated-temperature tensile properties, and the optimum heat treatment parameters were determined. It is shown that the optimized heat treatment process was composed of normalizing at 1050 °C followed by air cooling to room temperature and tempering at 700 °C. Under the optimum heat treatment condition, the room-temperature tensile properties were 1014 MPa (UTS), 810.5 MPa (YS) and 18.8% (elongation), while the values are 577.5 MPa (UTS), 469 MPa (YS) and 39.8% (elongation) tested at 550 °C. The microstructural examination shows that the strengthening contributions from microstructural factors were the martensitic lath width, dislocations, M23C6, MX and grain boundaries of prior austenite grain (PAG) in a descending order. The main factors influencing the tensile strength of 15Cr12MoVWN steel were the martensitic lath width and dislocations.


2012 ◽  
Vol 538-541 ◽  
pp. 1439-1442
Author(s):  
Qing Yang ◽  
Shu Jun Xie ◽  
Hai Tao Gao

To simulate the welding and heat treatment process of the Q345 plate with V-groove, Finite element software ANSYS was employed. A reasonable three-dimensional solid model was set up by using element birth and death technology to simulate the formation of the weld. Constraint was applied on both sides of the base metal in the welding and cooling process. Then constraint was removed when the specimen was cooled to room temperature, the angular distortion of welding increases by 75.03% after the constraint is removed. Then heat treatment was conducted on the plate of which the constraint was removed. The deformation results show that after heat treatment the angular distortion is reduced to 30.37% of the value before heat treatment.


2021 ◽  
Author(s):  
Liang-Yan Lee ◽  
Kai-Chieh Chang ◽  
Jun-Ren Zhao ◽  
Fei-Yi Hung

Abstract In this study, an Al-Mg-Sc-Zr alloy fabricated through selective laser melting (SLM) was subjected to a single-stage heat-treatment process and a two-stage heat-treatment process to determine the effect of heat treatment on the tensile properties and fatigue properties of the alloy at room temperature and high temperatures. The results indicated that heat treatment caused the precipitation of Al3(Sc, Zr), thus increasing the tensile strength. The dynamic strain aging of the SLM Al-Mg-Sc-Zr alloy disappeared as the tensile temperature increased. The alloy exhibited the highest tensile strength after it was subjected to the single-stage heat treatment at both room temperature and high temperatures owing to the precipitated phase distribution at the melting pool boundaries. However, fatigue resistance and high-temperature necking of the as-printed SLM Al-Mg-Sc-Zr alloy were problems that could not be resolved with the single-stage heat treatment. In the two-stage heat treatment, the precipitated phases exhibited a uniform distribution in the matrix, thereby reducing the high-temperature necking phenomenon. The two-stage heat treatment helped reduce the melting pool interface effect and strengthen the matrix, restricting the propagation of fatigue cracks and increasing the fatigue life of materials.


2008 ◽  
Vol 3 (2) ◽  
pp. 63-69
Author(s):  
M. Sivapragash ◽  
◽  
V. Sateeshkumar ◽  
P.R. Lakshminarayanan ◽  
R. Karthikeyan ◽  
...  

Author(s):  
Karanbir Singh ◽  
Aditya Chhabra ◽  
Vaibhav Kapoor ◽  
Vaibhav Kapoor

This study is conducted to analyze the effect on the Hardness and Micro Structural Behaviour of three Sample Grades of Tool Steel i.e. EN-31, EN-8, and D3 after Heat Treatment Processes Such As Annealing, Normalizing, and Hardening and Tempering. The purpose of Selecting Tool Steel is Because Tool Steel is Mostly Used in the Manufacturing Industry.This study is based upon the empirical study which means it is derived from experiment and observation rather than theory.


Sign in / Sign up

Export Citation Format

Share Document