In situ synchrotron X-ray diffraction with laser-heated diamond anvil cells study of Pt up to 95 GPa and 3150 K

RSC Advances ◽  
2015 ◽  
Vol 5 (19) ◽  
pp. 14603-14609 ◽  
Author(s):  
Xiaoli Huang ◽  
Fangfei Li ◽  
Qiang Zhou ◽  
Gang Wu ◽  
Yanping Huang ◽  
...  

In situ synchrotron X-ray diffraction with laser-heated diamond anvil cells study the EOS of Pt.

2001 ◽  
Vol 72 (2) ◽  
pp. 1289 ◽  
Author(s):  
Tetsu Watanuki ◽  
Osamu Shimomura ◽  
Takehiko Yagi ◽  
Tadashi Kondo ◽  
Maiko Isshiki

2010 ◽  
Vol 12 (12) ◽  
pp. 2059-2064 ◽  
Author(s):  
Björn Winkler ◽  
Erick A. Juarez-Arellano ◽  
Alexandra Friedrich ◽  
Lkhamsuren Bayarjargal ◽  
Florian Schröder ◽  
...  

2014 ◽  
Vol 277-278 ◽  
pp. 15-30 ◽  
Author(s):  
Ashkan Salamat ◽  
Rebecca A. Fischer ◽  
Richard Briggs ◽  
Malcolm I. McMahon ◽  
Sylvain Petitgirard

2014 ◽  
Vol 78 (2) ◽  
pp. 437-446 ◽  
Author(s):  
Kei Hirose

AbstractUltrahigh-pressure and -temperature (P-T) experimental techniques have progressed rapidly in recent years. By combining them with X-ray diffraction measurements at synchrotron radiation facilities, it is now possible to examine deep Earth mineralogy in situ at relevant high P-T conditions in a laser-heated diamond anvil cell (DAC). The lowermost part of the mantle, known as the D″ layer, has long been enigmatic because of a number of unexplained seismological features. Nevertheless, the discovery of a phase transition from MgSiO3 perovskite to ‘post-perovskite’ above 120 GPa and 2400 K indicates that post-perovskite is a principal constituent in the lowermost mantle, which is compatible with seismic observations. The ultrahigh P-T conditions of the Earth’s core have not been accessible by static experiments, but the structure and phase transition of Fe and Fe-alloys are now being examined up to 400 GPa and 6000 K by laser-heated DAC studies.


1997 ◽  
Vol 499 ◽  
Author(s):  
C. S. Yoo ◽  
H. Cynn ◽  
A. Campbell ◽  
J.-Z. Hu

ABSTRACTAn integrated technique of diamond-anvil cell, laser-heating and synchrotron x-ray diffraction technologies is capable of structural investigation of condensed matter in an extended region of high pressures and temperatures above 100 GPa and 3000 K. The feasibility of this technique to obtain reliable data, however, strongly depends on several experimental issues, including optical and x-ray setups, thermal gradients, pressure homogeneity, preferred orientation, and chemical reaction. In this paper, we discuss about these experimental issues together with future perspectives of this technique for obtaining accurate data.


2010 ◽  
Vol 66 (a1) ◽  
pp. s95-s96
Author(s):  
L. Dubrovinsky ◽  
N. Dubrovinskaia ◽  
K. Glazyrin ◽  
M. Merlini ◽  
M. Hanfland ◽  
...  

2001 ◽  
Vol 15 (18) ◽  
pp. 2491-2497 ◽  
Author(s):  
J. L. ZHU ◽  
L. C. CHEN ◽  
R. C. YU ◽  
F. Y. LI ◽  
J. LIU ◽  
...  

In situ high pressure energy dispersive X-ray diffraction measurements on layered perovskite-like manganate Ca 3 Mn 2 O 7 under pressures up to 35 GPa have been performed by using diamond anvil cell with synchrotron radiation. The results show that the structure of layered perovskite-like manganate Ca 3 Mn 2 O 7 is unstable under pressure due to the easy compression of NaCl-type blocks. The structure of Ca 3 Mn 2 O 7 underwent two phase transitions under pressures in the range of 0~35 GPa. One was at about 1.3 GPa with the crystal structure changing from tetragonal to orthorhombic. The other was at about 9.5 GPa with the crystal structure changing from orthorhombic back to another tetragonal.


2011 ◽  
Vol 82 (5) ◽  
pp. 055111 ◽  
Author(s):  
Benedetta Periotto ◽  
Fabrizio Nestola ◽  
Tonci Balic-Zunic ◽  
Ross J. Angel ◽  
Ronald Miletich ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document