A low-cost method for obtaining high-value bio-based propylene glycol from sugar beet pulp

RSC Advances ◽  
2015 ◽  
Vol 5 (3) ◽  
pp. 2299-2304 ◽  
Author(s):  
J. Berlowska ◽  
M. Binczarski ◽  
M. Dudkiewicz ◽  
H. Kalinowska ◽  
I. A. Witonska ◽  
...  

A new low-cost pathway for the production of high-value propylene glycol (PG) is proposed.

2017 ◽  
pp. 29-32 ◽  
Author(s):  
Kazm Eber Özba ◽  
Özen Özboy Özba

The sugar beet industry produces considerable amounts of organic waste and by-products. Sugar beet pulp (SBP) is the residue that remains after sugar extraction. SBP is a lignocellulosic by-product of the sugar industry and generally used as animal feed at relatively low price. Instead of cattle feeding, SBP can be used as a raw material for industrial applications because it is low-cost and available in large amounts. Biomass is a clean and renewable energy source. The use of SBP for the production of ethanol, methanol, single cell protein, biofuels etc. is economically very attractive. This literature review evaluates the use of SBP as biomass.


2017 ◽  
pp. 307-314
Author(s):  
Vesna Vucurovic ◽  
Vladimir Puskas ◽  
Uros Miljic

A simple, low cost, and effective method for the removal of acridine orange (AO), a mutagenic cationic dye, from aqueous model solutions by adsorption onto dried sugar beet pulp (SBP) was evaluated in the present study. The AO removal was enhanced along with the increase of the initial solution pH and dye concentration. It was found that the adsorption process closely follows a pseudo-second-order chemisorption kinetics. The obtained equilibrium data obey both the Freundlich and Langmuir isotherm models. The SBP was proved to be very promising adsorbent for AO removal. Maximum adsorption capacity of the Langmuir monolayer of SBP for AO was found to be 5.37, 34.6, 89.62, 144.53 and 324.58 mg/g, at 25?C for the solution pH of 2, 4, 5, 6, and 8, respectively.


2013 ◽  
pp. 313-321 ◽  
Author(s):  
Vesna Vucurovic ◽  
Radojka Razmovski ◽  
Uros Miljic ◽  
Vladimir Puskas

The immobilization of Saccharomyces cerevisiae onto sugar beet pulp (SBP) by natural adhesion is an efficient and low-cost method for retaining high biocatalyst density in the ethanol fermentation system. In the present study, cells of S. cerevisiae 163, were immobilized by natural adhesion onto SBP. The retention of immobilized cells attained the level of about 1.7?1011 cells/gram of dry SBP. Continuous ethanol production from sugar beet thick juice (TJ) was performed in a cylinder glass bioreactor at a temperature of 30?C and pH 5 during a 27-day period. The stability of the fermentation process at dilution rate (D) of 0.025 h-1 and 0.05 h-1 was evaluated. The yeast-SBP system was shown to be stable for over a 15-day period at the dilution rate of 0.025 h-1, while the dilution rate of 0.05 h-1 was found to be unsuitable due to the intensive yeast leaching from the support. At D of 0.025 h-1 the maximum sugar utilization (Su), ethanol concentration (P), volumetric ethanol productivity (Qp), ethanol yield (Yp/s) and fermentation efficiency were 97.1%, 54.7 g/l, 2.3 g/lh, 0.498 g/g and 97.6%, respectively.


Molecules ◽  
2016 ◽  
Vol 21 (10) ◽  
pp. 1380 ◽  
Author(s):  
Joanna Berlowska ◽  
Weronika Cieciura ◽  
Sebastian Borowski ◽  
Marta Dudkiewicz ◽  
Michal Binczarski ◽  
...  

Author(s):  
S.V. Meshcheryakov ◽  
◽  
I.S. Eremin ◽  
D.O. Sidorenko ◽  
M.S. Kotelev ◽  
...  
Keyword(s):  

2016 ◽  
pp. 565-570
Author(s):  
Huang Qin ◽  
Zhu Si-ming ◽  
Zeng Di ◽  
Yu Shu-juan

Sugar beet pulp (SBP) was used as low value adsorbent for the removal of calcium from hard water. Batch experiments were conducted to determine the factors affecting adsorption of the process such as pH value and Ca concentration. The adsorption equilibrium of Ca2+ by the SBP is reached after 100min and a pseudo second-order kinetic model can describe the adsorption process. The initial concentrations of Ca varied from 927 to 1127mgCa2+/L. A dose of 30g/L sugar beet pulp was sufficient for the optimum removal of calcium. The overall uptake of Ca ions by sugar beet pulp has its maximum at pH=8. The adsorption equilibrium data fitted well with the Langmuir adsorption isotherm equation.


2012 ◽  
pp. 756-761 ◽  
Author(s):  
Miroslav Hutnan ◽  
Štefan Tóth ◽  
Igor Bodík ◽  
Nina Kolesárová ◽  
Michal Lazor ◽  
...  

The possibility of joint treatment of spent sugar beet pulp and wastewater from a sugar factory was studied in this work. Works focused on processing of spent sugar beet pulp separately or together with other substrates can be found in the literature. In the case of some sugar factories, which have spare capacity in the anaerobic reactor on an anaerobic-aerobic wastewater treatment plant, joint processing of spent sugar beet pulp and wastewater from the sugar factory might be an interesting option. The results of the operation of a pilot plant of an anaerobic reactor with a capacity of 3.5 m3 are discussed. Operation of the pilot plant confirmed the possibility of cofermentation of these materials. The organic loading rate achieved in the anaerobic reactor was higher than 6 kg/(m3·d) (COD), while more than half of the load was provided by spent sugar beet pulp. The addition of sugar beet pulp decreased the concentration of ammonia nitrogen in the anaerobic reactor and it was even necessary to add nitrogen. However, the nitrogen content in sludge water depends on the C:N ratio in the processed sugar beet pulp, therefore this knowledge cannot be generalized. About 1.5 to 2-fold biogas production can be expected from the cofermentation of wastewater with sugar beet pulp in an anaerobic reactor, compared with the biogas production from just wastewater treatment.


Biofuels ◽  
2021 ◽  
pp. 1-8
Author(s):  
Saida Ibragić ◽  
Narcisa Smječanin ◽  
Ranko Milušić ◽  
Mirza Nuhanović

Sign in / Sign up

Export Citation Format

Share Document