Kinetic and thermodynamic study of the adsorption of calcium onto sugar beet pulp

2016 ◽  
pp. 565-570
Author(s):  
Huang Qin ◽  
Zhu Si-ming ◽  
Zeng Di ◽  
Yu Shu-juan

Sugar beet pulp (SBP) was used as low value adsorbent for the removal of calcium from hard water. Batch experiments were conducted to determine the factors affecting adsorption of the process such as pH value and Ca concentration. The adsorption equilibrium of Ca2+ by the SBP is reached after 100min and a pseudo second-order kinetic model can describe the adsorption process. The initial concentrations of Ca varied from 927 to 1127mgCa2+/L. A dose of 30g/L sugar beet pulp was sufficient for the optimum removal of calcium. The overall uptake of Ca ions by sugar beet pulp has its maximum at pH=8. The adsorption equilibrium data fitted well with the Langmuir adsorption isotherm equation.

2011 ◽  
Vol 50 (No. 12) ◽  
pp. 553-560 ◽  
Author(s):  
P. Doležal ◽  
V. Pyrochta ◽  
J. Doležal

This study deals with effects of pressing of ensiled sugar-beet pulp and of application of a chemical preservative on the quality of fermentation process. The experimental silages had a better sensory evaluation than the control ones. In silages treated chemically with a mixture of acids, statistically significantly (P < 0.01) higher dry matter content, lowest pH value, the value of lactic acid and the lowest content of all acids in dry matter were found after 180 days of storage from the beginning of the experiment. The statistically significantly (P < 0.01) highest lactic acid content (43.39 ± 1.25 g/kg DM) was determined in the control pressed silage. The highest LA/VFA ratio (1.40 ± 0.18) was calculated for non-pressed experimental silage (D – 3 l/t of KEM). As compared with untreated control the highest percentage (P < 0.01) of lactic acid and of all fermentation acids was found out in silage D treated with 3 l/t of KEM (58.18 ± 0.47 g/kg DM). Undesirable butyric and propionic acids were not found in chemically treated silage samples (C, D, E, F). However, the highest (P < 0.01) contents of butyric acid (26.37 ± 0.91 g/DM) and propionic acid (4.58 ± 0.78 g/DM) were measured in untreated non-pressed silage samples (B). The highest (P < 0.01) contents of acetic acid and ethanol were found in control silage samples. The quality of these silages was evaluated as very low.  


2020 ◽  
Vol 24 (3) ◽  
pp. 29-33
Author(s):  
N.E. Pavlovskaya ◽  
I.V. Gorkova ◽  
A.Yu. Gavrilova ◽  
I.N. Gagarina

The modern aspects of some rheological characteristics of polymeric materials obtained using starch of substandard wheat grains and sugar beet pulp are considered. The main factors affecting mixing are discussed, which ensures high-quality dispersion and distribution of particles in the matrix in order to obtain a homogeneous mixture and the required properties of biopolymers. A study on the selection of the percentage ratio of fillers (starch and sugar beet pulp) allowed us to develop compositions for biodegradable films. The main objective of the research is to reduce the biodegradation period of polymeric material based on starch from substandard wheat grains and sugar beet pulp.


2017 ◽  
pp. 307-314
Author(s):  
Vesna Vucurovic ◽  
Vladimir Puskas ◽  
Uros Miljic

A simple, low cost, and effective method for the removal of acridine orange (AO), a mutagenic cationic dye, from aqueous model solutions by adsorption onto dried sugar beet pulp (SBP) was evaluated in the present study. The AO removal was enhanced along with the increase of the initial solution pH and dye concentration. It was found that the adsorption process closely follows a pseudo-second-order chemisorption kinetics. The obtained equilibrium data obey both the Freundlich and Langmuir isotherm models. The SBP was proved to be very promising adsorbent for AO removal. Maximum adsorption capacity of the Langmuir monolayer of SBP for AO was found to be 5.37, 34.6, 89.62, 144.53 and 324.58 mg/g, at 25?C for the solution pH of 2, 4, 5, 6, and 8, respectively.


Nahrung/Food ◽  
1991 ◽  
Vol 35 (6) ◽  
pp. 641-645
Author(s):  
A. El-Makhzangy ◽  
K. Ayyad ◽  
E. Abo-ElNile

Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3496
Author(s):  
Mohamed K. Mohsen ◽  
Mohamed F. Ali ◽  
Hamed M. Gaafar ◽  
Taha S. Al-Sakka ◽  
Salama M. Aboelenin ◽  
...  

Thirty multiparous lactating Holstein cows with an average live body weight of 642 ± 21 kg and an average daily milk yield of 30.46 ± 0.59 kg were used in this study. Cows with parities of 2 and 4 were used following their peak period, and were divided into three groups, with ten cows in each group. The control group was fed yellow corn grain rations (YCG), while for the 2nd and 3rd groups, 25 and 50% of YCG was replaced with dry sugar beet pulp (DSBP), denoted as DSBP25 and DSBP50, respectively. The contents of dry matter, organic matter, ether extract, nitrogen-free extract, and fiber carbohydrate in the experimental rations tended to decrease; however, crude protein, crude fiber, ash, and fiber fractions tended to increase in the DSBP25 and DSBP50 groups. Only crude fiber digestibility increased (p < 0.05) in the DSBP rations. Rumen pH value and concentration of ammonia nitrogen (NH3-N) decreased, while the concentration of total volatile fatty acids (TVFAs) increased in the DSBP25 and DSBP50 groups. The concentrations of total protein and globulin in blood plasma were higher (p < 0.05) in DSBP25 and DSBP50 than in YCG. However, plasma albumin concentration, aspartate aminotransferase (AST), and alanine aminotransferase (ALT) activities were lower (p < 0.05) in DSBP50 than in YCG. Milk yield and yield of 4% fat-corrected milk (4% FCM) were higher (p < 0.05) in DSBP25 and DSBP50 than in YCG. Fat, protein, solids not fat (SNF), and total solids (TS) contents in milk increased significantly (p < 0.05) for feeding rations containing DSBP. Feed cost was reduced, but the output of milk yield increased with DSBP. In conclusion, introducing DSBP into the rations of Holstein dairy cows led to significant improvements in their productive performance.


Author(s):  
Petr Doležal

The influence of benzoic acid and formic acid (positive control) of ensilaged maize and pressed sugar beet pulp on quality fermentation processes was studied in a laboratory experiment. The effect of additive on the quality of fermentation process during maize ensiling was studied in a first model experiment. Preservatives such as formic acid and benzoic acid were added to ensiled maize at the concentration of 1L/t and 1 kg/t, respectively. When benzoic acid was used as a preservative, the pH and the N-NH3/ N total ratio decreased statistically (P<0.05) significantly while the titration acidity increased (P<0.05) in comparison with the control values. The addition of HCOOH to the maize silage reduced the level of acetic acid in dry matter by 11.3% while the overall level of acids decreased by 1.8%. The minimum loss of dry matter (2%) was found in the silage treated with formic acid in comparison with that of the control (11.0%).Sugar beet pulp silages with benzoic acid or formic acid after 32 days of storage had a better sensuous evaluation than the control silage. The most intensive decrease of pH value was observed after formic acid addition as compared with control silage. The statistically significantly (P<0.05) highest lactic acid content (49.64 ± 0.28) as well as the highest ratio of LA/VFA were found in the sugar beet pulp silage with benzoic acid. Lactic acid constituted the highest percentage (P<0.05) of all fermentation acids in the silage with benzoic acid additive (65.12 ± 0.80). Undesirable butyric acid (BA) was not found in any variant of silages. The positive correlation between the titration acidity and acids sum in dry matter of silage conserved with formic acid was found. The additive of organic acids reduced significantly TA and fermentation acids content. Between the pH value and lactic acid content, no correlation was found.


Author(s):  
S.V. Meshcheryakov ◽  
◽  
I.S. Eremin ◽  
D.O. Sidorenko ◽  
M.S. Kotelev ◽  
...  
Keyword(s):  

2012 ◽  
pp. 756-761 ◽  
Author(s):  
Miroslav Hutnan ◽  
Štefan Tóth ◽  
Igor Bodík ◽  
Nina Kolesárová ◽  
Michal Lazor ◽  
...  

The possibility of joint treatment of spent sugar beet pulp and wastewater from a sugar factory was studied in this work. Works focused on processing of spent sugar beet pulp separately or together with other substrates can be found in the literature. In the case of some sugar factories, which have spare capacity in the anaerobic reactor on an anaerobic-aerobic wastewater treatment plant, joint processing of spent sugar beet pulp and wastewater from the sugar factory might be an interesting option. The results of the operation of a pilot plant of an anaerobic reactor with a capacity of 3.5 m3 are discussed. Operation of the pilot plant confirmed the possibility of cofermentation of these materials. The organic loading rate achieved in the anaerobic reactor was higher than 6 kg/(m3·d) (COD), while more than half of the load was provided by spent sugar beet pulp. The addition of sugar beet pulp decreased the concentration of ammonia nitrogen in the anaerobic reactor and it was even necessary to add nitrogen. However, the nitrogen content in sludge water depends on the C:N ratio in the processed sugar beet pulp, therefore this knowledge cannot be generalized. About 1.5 to 2-fold biogas production can be expected from the cofermentation of wastewater with sugar beet pulp in an anaerobic reactor, compared with the biogas production from just wastewater treatment.


2002 ◽  
Vol 2 (5-6) ◽  
pp. 217-224 ◽  
Author(s):  
Z. Reddad ◽  
C. Gérente ◽  
Y. Andrès ◽  
P. Le Cloirec

In the present work, sugar beet pulp, a common waste from the sugar refining industry, was studied in the removal of metal ions from aqueous solutions. The ability of this cheap biopolymer to sorb several metals namely Pb2+, Cu2+, Zn2+, Cd2+ and Ni2+ in aqueous solutions was investigated. The metal fixation capacities of the sorbent were determined according to operating conditions and the fixation mechanisms were identified. The biopolymer has shown high elimination rates and interesting metal fixation capacities. A pseudo-second-order kinetic model was tested to investigate the adsorption mechanisms. The kinetic parameters of the model were calculated and discussed. For 8 × 10-4 M initial metal concentration, the initial sorption rates (v0) ranged from 0.063 mmol.g-1.min-1 for Pb2+ to 0.275 mmol.g-1.min-1 for Ni2+ ions, with the order: Ni2+ &gt; Cd2+ &gt; Zn2+ &gt; Cu2+ &gt; Pb2+. The equilibrium data fitted well with the Langmuir model and showed the following affinity order of the material: Pb2+ &gt; Cu2+ &gt; Zn2+ &gt; Cd2+ &gt; Ni2+. Then, the kinetic and equilibrium parameters calculated qm and v0 were tentatively correlated to the properties of the metals. Finally, equilibrium experiments in multimetallic systems were performed to study the competition of the fixation of Pb2+, Zn2+ and Ni2+ cations. In all cases, the metal fixation onto the biopolymer was found to be favourable in multicomponent systems. Based on these results, it is demonstrated that this biosorbent represents a low-cost solution for the treatment of metal-polluted wastewaters.


Sign in / Sign up

Export Citation Format

Share Document