Effects of surface tension on the adhesive contact of a rigid sphere to a compliant substrate

Soft Matter ◽  
2014 ◽  
Vol 10 (26) ◽  
pp. 4625-4632 ◽  
Author(s):  
Xuejuan Xu ◽  
Anand Jagota ◽  
Chung-Yuen Hui
Soft Matter ◽  
2019 ◽  
Vol 15 (10) ◽  
pp. 2223-2231 ◽  
Author(s):  
Zezhou Liu ◽  
Katharine E. Jensen ◽  
Qin Xu ◽  
Robert W. Style ◽  
Eric R. Dufresne ◽  
...  

Finite element is used to simulate the adhesive contact of a rigid sphere on a soft substrate. By including large deformation and strain-dependent surface stress, our prediction agrees much better with experiments, providing support to the existence of strain-dependent surface stress.


2013 ◽  
Vol 80 (2) ◽  
Author(s):  
Z. Song ◽  
K. Komvopoulos

Adhesive contact of a rigid sphere with a layered medium consisting of a stiff elastic layer perfectly bonded to an elastic-plastic substrate is examined in the context of finite element simulations. Surface adhesion is modeled by nonlinear spring elements obeying a force-displacement relation governed by the Lennard–Jones potential. Adhesive contact is interpreted in terms of the layer thickness, effective Tabor parameter (a function of the layer thickness and Tabor parameters corresponding to layer and substrate material properties), maximum surface separation, layer-to-substrate elastic modulus ratio, and plasticity parameter (a characteristic adhesive stress expressed as the ratio of the work of adhesion to the surface equilibrium distance, divided by the yield strength of the substrate). It is shown that surface separation (detachment) during unloading is not encountered at the instant of maximum adhesion (pull-off) force, but as the layered medium is stretched by the rigid sphere, when abrupt surface separation (jump-out) occurs under a smaller force (surface separation force). Ductile- and brittle-like modes of surface detachment, characterized by the formation of a neck between the rigid sphere and the layered medium and a residual impression on the unloaded layered medium, respectively, are interpreted for a wide range of plasticity parameter and maximum surface separation. Numerical results illustrate the effects of layer thickness, bulk and surface material properties, and maximum surface separation (interaction distance) on the pull-off and surface separation forces, jump-in and jump-out contact instabilities, and evolution of substrate plasticity during loading and unloading. Simulations of cyclic adhesive contact demonstrate that incremental plasticity (ratcheting) in the substrate is the most likely steady-state deformation mechanism under repetitive adhesive contact conditions.


Author(s):  
Z. Song ◽  
K. Komvopoulos

A continuum model of adhesive interaction between elastic surfaces is presented. Surface interaction between two elastic spheres is modeled by the Lennard-Jones (L-J) potential. The analysis is based on the equivalent system of a rigid sphere of reduced radius in close proximity with an elastic half-space of effective elastic modulus. The critical gap at the instant of the “jump-in” and “jump-out” contact instabilities is determined by an elastic solution of the half-space surface displacement. A finite element model, in which surface interaction is modeled by nonlinear springs of a prescribed force-displacement governed by the L-J potential, is also used to analyze adhesive surface interaction. The analytical model is validated by finite element results of the critical central gap at the instant of jumpin and jump-out instabilities for different values of the Tabor parameter.


Author(s):  
Chung-Yuen Hui ◽  
Tianshu Liu ◽  
Thomas Salez ◽  
Elie Raphael ◽  
Anand Jagota

The surface tension of compliant materials such as gels provides resistance to deformation in addition to and sometimes surpassing that owing to elasticity. This paper studies how surface tension changes the contact mechanics of a small hard sphere indenting a soft elastic substrate. Previous studies have examined the special case where the external load is zero, so contact is driven by adhesion alone. Here, we tackle the much more complicated problem where, in addition to adhesion, deformation is driven by an indentation force. We present an exact solution based on small strain theory. The relation between indentation force (displacement) and contact radius is found to depend on a single dimensionless parameter: ω = σ ( μR ) −2/3 ((9 π /4) W ad ) −1/3 , where σ and μ are the surface tension and shear modulus of the substrate, R is the sphere radius and W ad is the interfacial work of adhesion. Our theory reduces to the Johnson–Kendall–Roberts (JKR) theory and Young–Dupre equation in the limits of small and large ω , respectively, and compares well with existing experimental data. Our results show that, although surface tension can significantly affect the indentation force, the magnitude of the pull-off load in the partial wetting liquid-like limit is reduced only by one-third compared with the JKR limit and the pull-off behaviour is completely determined by ω .


2021 ◽  
Vol 7 ◽  
Author(s):  
Guido Violano ◽  
Antoine Chateauminois ◽  
Luciano Afferrante

A closed-form solution for the adhesive contact of soft spheres of linear elastic material is available since 1971 thanks to the work of Johnson, Kendall, and Roberts (JKR). A similar solution for viscoelastic spheres is still missing, though semi-analytical and numerical models are available today. In this note, we propose a closed-form analytical solution, based on JKR theory, for the detachment of a rigid sphere from a viscoelastic substrate. The solution returns the applied load and contact penetration as functions of the contact radius and correctly captures the velocity-dependent nature of the viscoelastic pull-off. Moreover, a simple approach is provided to estimate the stick time, i.e., the delay between the time the sphere starts raising from the substrate and the time the contact radius starts reducing. A simple formula is also suggested for the viscoelastic pull-off force. Finally, a comparison with experimental and numerical data is shown.


Author(s):  
Valentin L. Popov

AbstractWe consider an adhesive contact between a thin soft layer on a rigid substrate and a rigid cylindrical indenter (“line contact”) taking the surface tension of the layer into account. First, it is shown that the boundary condition for the surface outside the contact area is given by the constant contact angle—as in the case of fluids in contact with solid surfaces. In the approximation of thin layer and under usual assumptions of small indentation and small inclination angles of the surface, the problem is solved analytically. In the case of a non-adhesive contact, surface tension makes the contact stiffer (at the given indentation depth, the contact half-width becomes smaller and the indentation force larger). In the case of adhesive contact, the influence of surface tension seems to be more complicated: For a flat-ended punch, it increases with increasing the surface tension, while for a wedge, it decreases. Thus, the influence of the surface tension on the adhesion force seems to be dependent on the particular geometry of the contacting bodies.


Sign in / Sign up

Export Citation Format

Share Document