scholarly journals Gas bubble dynamics in soft materials

Soft Matter ◽  
2015 ◽  
Vol 11 (1) ◽  
pp. 202-210 ◽  
Author(s):  
J. M. Solano-Altamirano ◽  
John D. Malcolm ◽  
Saul Goldman

Gas bubbles dissolve slower and expand faster in a soft solid elastic medium, relative to a simple (inviscid) liquid medium.

1976 ◽  
Vol 98 (1) ◽  
pp. 5-11 ◽  
Author(s):  
W. J. Minkowycz ◽  
D. M. France ◽  
R. M. Singer

Conservation equations are derived for the motion of a small inert gas bubble in a large flowing liquid-gas solution subjected to large thermal gradients. Terms which are of the second order of magnitude under less severe and steady-state conditions are retained, thus resulting in an expanded form of the Rayleigh equation. The bubble dynamics is a function of opposing mechanisms tending to increase or decrease bubble volume while being transported with the solution. Diffusion of inert gas between the bubble and the solution is one of the most important of these mechanisms included in the analysis. The analytical model is applied to an argon gas bubble flowing in a weak solution of argon gas in liquid sodium. Calculations are performed for these fluids under conditions typical of normal and abnormal operation of a liquid metal fast breeder reactor (LMFBR) core and the resulting bubble radius, internal gas pressure, and mass of inert gas are presented in each case. An important result obtained indicates that inert gas bubbles reaching the core inlet of an LMFBR will always grow as they traverse the core under normal and extreme abnormal conditions and that the rate of growth is quite small in all cases.


2005 ◽  
Vol 118 (4) ◽  
pp. 2173-2181 ◽  
Author(s):  
Evgenia A. Zabolotskaya ◽  
Yurii A. Ilinskii ◽  
G. Douglas Meegan ◽  
Mark F. Hamilton

Author(s):  
Higor Veiga ◽  
Edgar Ofuchi ◽  
Henrique Stel ◽  
Ernesto Mancilla ◽  
Dalton Bertoldi ◽  
...  
Keyword(s):  

2015 ◽  
Vol 51 (2) ◽  
pp. 1036-1049 ◽  
Author(s):  
Jorge A. Ramirez ◽  
Andy J. Baird ◽  
Tom J. Coulthard ◽  
J. Michael Waddington

2021 ◽  
Author(s):  
Lilly Zacherl ◽  
Thomas Baumann

<p>Scalings in geothermal systems are affecting the efficiency and safety of geothermal systems. An operate-until-fail maintenance scheme might seem appropriate for subsurface installations where the replacement of pumps and production pipes is costly and regular maintenance comprises a complete overhaul of the installations. The situation is different for surface level installations and injection wells. Here, monitoring of the thickness of precipitates is the key to optimized maintenance schedules and long-term operation.</p><p>A questionnaire revealed that operators of geothermal facilities start with a standardized maintenance schedule which is adjusted based on local experience. Sensor networks, numerical modelling and predictive maintenance are not yet applied. In this project we are aiming to close this gap with the development of a non-invasive sensor system coupled to innovative data acquisition and evaluation and an expert system to quantitatively predict the development of precipitations in geothermal systems and open cooling towers.</p><p>Previous investigations of scalings in the lower part of production pipes of a geothermal facility suggest that the disruption of the carbonate equilibrium is triggered by the formation of gas bubbles in the pump and subsequent stripping of CO<sub>2</sub>. Although small in it's overall effect on pH-value and saturation index, significant amounts of precipitates are forming at high volumetric flow rates. To assess the kinetics of gas bubble induced precipitations laboratory experiments were run. The experiment addresses precipitations at surfaces and at the gas bubbles themselves.</p>


1970 ◽  
Vol 92 (4) ◽  
pp. 681-688 ◽  
Author(s):  
J. William Holl

This paper is a review of existing knowledge on cavitation nuclei. The lack of significant tensions in ordinary liquids is due to so-called weak spots or cavitation nuclei. The various forms which have been proposed for nuclei are gas bubbles, gas in a crevice, gas bubble with organic skin, and a hydrophobic solid. The stability argument leading to the postulation of the Harvey model is reviewed. Aspects of bubble growth are considered and it is shown that bubbles having different initial sizes will undergo vaporous cavitation at different liquid tensions. The three modes of growth, namely vaporous, pseudo, and gaseous are presented and implications concerning the interpretation of data are considered. The question of the source of nuclei and implications concerning scale effects are made. The measurement of nuclei is considered together with experiments on the effect of gas content on incipient cavitation.


Author(s):  
Chang Dae Han

Polymer melts (or polymer solutions) with a solubilized gaseous component (which occur under sufficiently high pressures, thus forming homogeneous mixtures), and polymer melts (or polymer solutions) with dispersed gas bubbles (thus forming heterogeneous mixtures of polymeric fluid and gas bubbles) are encountered in thermoplastic foam processing and polymer devolatilization. Thus, a good understanding of the rheological behavior of such mixtures is very important to the design of processing equipment and successful optimization of such polymer processing operations. From the 1950s through the 1970s, the dynamics of a single, spherical gas bubble dispersed in a stationary Newtonian or viscoelastic medium was extensively reported in the literature (Barlow and Langlois 1962; Duda and Vrentas 1969; Epstein and Plesset 1950; Folger and Goddard 1970; Marique and Houghton 1962; Plessst and Zwick 1952; Rosner and Epstein 1972; Ruckenstein and Davis 1970; Scriven 1959; Street 1968; Street et al. 1971; Tanasawa and Yang 1970; Ting 1975; Yang and Yeh 1966; Yoo and Han 1982; Zana and Leal 1975). While such investigations are of fundamental importance in their own right, they are not much help to describe bubble dynamics in thermoplastic foam extrusion or structural foam injection molding, for instance. There is no question that an investigation of bubble dynamics in a flowing molten polymer with dispersed gas bubbles is a very difficult subject by any measure. Thus, understandably, a relatively small number of research publications on bubble dynamics in a flowing molten polymer have been reported (Han and Villamizar 1978; Han et al. 1976; Yoo and Han 1981). The complexity of the problem arises from other related issues, such as the solubility and diffusivity of gaseous component(s) in a flowing molten polymer, which in turn depend on temperature and pressure of the system. Further, a gaseous component solubilized in molten polymer in the upstream side of a die, for instance, may nucleate as the pressure of the fluid stream decreases along the die axis, after which they could grow continuously as the molten polymer with dispersed gas bubbles flows through the rest of the die.


Sign in / Sign up

Export Citation Format

Share Document