Electrochemical co-deposition of sol–gel/carbon nanotube composite thin films for antireflection and non-linear optics

2015 ◽  
Vol 3 (5) ◽  
pp. 1099-1105 ◽  
Author(s):  
Liang Liu ◽  
Shai Yellinek ◽  
Noam Tal ◽  
Reut Toledano ◽  
Ariela Donval ◽  
...  

This work reports a method for electrodepositing sol–gel/CNT composite films. The deposition is highly selective to conductive surfaces, and the films exhibit non-linear optical properties and excellent antireflection performance.

2012 ◽  
Vol 65 (7) ◽  
pp. 834 ◽  
Author(s):  
Adam Barlow ◽  
Bandar Babgi ◽  
Marek Samoc ◽  
T. Christopher Corkery ◽  
Stijn van Cleuvenbergen ◽  
...  

The alkynes HC≡CC6H2-2,6-Et2-4-C≡CC6H4-4-NO2 (4) and HC≡CC6H4-4-C≡CC6H2-2,6-Et2-4-C≡CC6H4-4-NO2 (6) and gold alkynyl complexes Au{C≡CC6H2-2,5-(OEt)2-4-C≡CC6H4-4-NO2}(PPh3) (7), Au(C≡CC6H2-2,6-Et2-4-C≡CC6H4-4-NO2)(PPh3) (8), and Au(C≡CC6H4-4-C≡CC6H2-2,6-Et2-4-C≡CC6H4-4-NO2)(PPh3) (9) have been synthesized. The linear optical properties and quadratic optical non-linearities of 7–9 have been measured, the latter by hyper-Rayleigh scattering at 1064 nm, and compared with data for the previously reported complexes Au(C≡CC6H4-4-NO2)(PPh3) (10) and Au(C≡CC6H4-4-C≡CC6H4-4-NO2)(PPh3) (11). The optical absorption maximum red-shifts and the first hyperpolarizabilities increase on π-system lengthening and on introduction of electron-releasing substituents on the π-bridge ring adjacent to the metal centre. The cubic non-linear optical properties of 1,4-{(PCy3)Au(C≡C)}2C6H4 (12) and {(PCy3)Au(C≡C-4-C6H4C≡C)}6C6 (13) have been assessed by wide spectroscopic range femtosecond Z-scan studies; the maximal values of the imaginary component and the effective two-photon absorption cross-section increase markedly on proceeding from linear complex 12 to 6-fold-symmetric complex 13, an increase that is maintained when data are scaled by relative molecular weight.


2011 ◽  
Vol 509 (30) ◽  
pp. 7854-7860 ◽  
Author(s):  
A. Esmaielzadeh Kandjani ◽  
M. Farzalipour Tabriz ◽  
O. Mohammad Moradi ◽  
H.R. Rezaeian Mehr ◽  
S. Ahmadi Kandjani ◽  
...  

1996 ◽  
Vol 31 (2) ◽  
pp. 423-430 ◽  
Author(s):  
T. Takada ◽  
J. D. Mackenzie ◽  
M. Yamane ◽  
K. Kang ◽  
N. Peyghambarian ◽  
...  

2014 ◽  
Vol 12 (10) ◽  
pp. 1016-1022 ◽  
Author(s):  
Vitor Rodrigues ◽  
Maria Costa ◽  
Etelvina Gomes ◽  
Dmitry Isakov ◽  
Michael Belsley

AbstractThe crystal structure and non-linear optical properties of L-alaninium perrhenate, C3H8NO2+ ReO4 −, are reported. The protonated amino acid and the perrhenate anion have their usual geometries. The three-dimensional hydrogen-bonded network can be seen as a stacking of layers parallel to the (100) planes. Each layer is formed by chains of alternating positive and negative ions along the b and c axes. Hydrogen bonding of adjacent layers forms alternating chains along the a axis. A high damage threshold and a second-harmonic generation efficiency three times that of KDP make this new material potentially useful in non-linear optics.


Sign in / Sign up

Export Citation Format

Share Document