Characterization of the degradation products of bambuterol using LCMS-QTOF and NMR

2015 ◽  
Vol 7 (18) ◽  
pp. 7659-7673 ◽  
Author(s):  
A. Abiramasundari ◽  
V. Sudarsanam ◽  
Kamala K. Vasu

A systematic forced degradation study of bambuterol was carried out according to ICH guidelines. Twelve degradation products of bambuterol were identified and characterized. Plausible mechanisms of formation of the degradation products are discussed.

2020 ◽  
Vol 16 (8) ◽  
pp. 1130-1139
Author(s):  
Singaram Sathiyanarayanan ◽  
Chidambaram Subramanian Venkatesan ◽  
Senthamaraikannan Kabilan

Background: Regadenoson is an A2A adenosine receptor agonist that is a coronary vasodilator and commonly used as a pharmacologic cardiac stressing agents. Methods: HPLC method was used for the analysis of related substances. The degraded impurities during the process were isolated and characterized by IR, Mass and NMR spectral analysis. Results: Forced degradation study of regadenoson under conditions of hydrolysis (neutral, acidic and alkaline) and oxidations suggested in the ICH Q1A(R2) was accomplished. The drug showed significant degradation under all the above conditions. On the whole, five novel degradation products were found under diverse conditions along with process related impurities which were not reported earlier. Conclusion: All the degradation products were well characterized by using advanced spectroscopic techniques like IR, 1H NMR, 13C NMR and Mass spectra. The identification of these impurities will be productive for the quality control during the production and stability behavior of the regadenoson drug substance.


2019 ◽  
Vol 43 (19) ◽  
pp. 7294-7306 ◽  
Author(s):  
G. Shankar ◽  
Roshan M. Borkar ◽  
Suresh Udutha ◽  
M. Kanakaraju ◽  
G. Sai Charan ◽  
...  

Omeprazole (OMP), a prototype proton pump inhibitor used for the treatment of peptic ulcers and gastroesophageal reflux disease (GERD), was subjected to forced degradation studies as per ICH guidelines Q1A (R2).


RSC Advances ◽  
2015 ◽  
Vol 5 (85) ◽  
pp. 69273-69288 ◽  
Author(s):  
Pradipbhai D. Kalariya ◽  
Prinesh N. Patel ◽  
Mahesh Sharma ◽  
Prabha Garg ◽  
R. Srinivas ◽  
...  

Forced degradation study of blonanserin and structural elucidation of its degradation products was performed using high resolution tandem mass spectrometry.


Author(s):  
S. K. REEHANA ◽  
K. SUJANA

Objective: The current study focused on the development, validation, and characterization of forced degradation products using LC-MS/MS. Methods: A simple, selective, validated and well-defined isocratic HPLC methodology for the quantitative determination of Tucatinib at a wavelength of 239 nm. An isocratic elution of samples was performed on an Inertsil ODS (250x4.6 mm, 5m) column with a mobile phase of 70:30v/v Acetonitrile and formic acid (0.1%) delivered at a flow rate of 1.0 ml/min. MS/MS was used to characterize degradation products formed in the forced degradation study. The validation and characterization of forced degradation products were performed in accordance with ICH guidelines. Results: Over the concentration range of 5-100μg/ml, a good linear response was obtained. Tucatinib's LOD and LOQ were determined to be 0.05 and 0.5, respectively. According to standard guidelines, the method was quantitatively evaluated in terms of system suitability, linearity, precision, accuracy, and robustness, and the results were found to be within acceptable limits. The drug was degraded under acidic, alkaline, and reduction conditions in forced degradation studies. Conclusion: The method was found to be applicable for routine tucatinib analysis. Because no LC-MS/MS method for estimating tucatinib and its degradation products has been reported in the literature. There is a need to develop a method for studying the entire tucatinib degradation pathway.


2013 ◽  
Vol 36 (15) ◽  
pp. 2082-2094 ◽  
Author(s):  
Zarko Jovic ◽  
Ljiljana Zivanovic ◽  
Ana Protic ◽  
Marina Radisic ◽  
Mila Lausevic ◽  
...  

2014 ◽  
Vol 37 (4) ◽  
pp. 368-375 ◽  
Author(s):  
Thippani Ramesh ◽  
Pothuraju Nageswara Rao ◽  
Ramisetti Nageswara Rao

Sign in / Sign up

Export Citation Format

Share Document