The development of paper microfluidic devices for presumptive drug detection

2015 ◽  
Vol 7 (19) ◽  
pp. 8025-8033 ◽  
Author(s):  
Giacomo Musile ◽  
Ling Wang ◽  
Jashaun Bottoms ◽  
Franco Tagliaro ◽  
Bruce McCord

Colorimetric detection of morphine on a 6 channel paper microfluidic device.

2021 ◽  
Author(s):  
Samantha Richardson ◽  
Alexander Iles ◽  
Jeanette M. Rotchell ◽  
Tim Charlson ◽  
Annabel Hanson ◽  
...  

We demonstrate how a combination of paper microfluidic devices and handheld mobile technology can be used by citizen scientists to carry out a sustained water monitoring campaign. We have developed a paper-based analysis device and a 3 minute sampling workflow that requires no more than a container, a test device and a smartphone app. The contaminant measured in these pilots are phosphates, detectable down to 3 mg L<sup>-1</sup>. Together these allow volunteers to successfully carry out cost-effective, high frequency, phosphate monitoring over an extended geographies and periods.


The Analyst ◽  
2016 ◽  
Vol 141 (22) ◽  
pp. 6314-6320 ◽  
Author(s):  
Abdulghani Ismail ◽  
Marillya O. Araújo ◽  
Cyro L. S. Chagas ◽  
Sophie Griveau ◽  
Fanny D'Orlyé ◽  
...  

A disposable paper microfluidic device was developed to analyse different S-nitrosothiols simultaneously decomposed by Hg2+ as well as UV, Vis and IR lamps.


The Analyst ◽  
2016 ◽  
Vol 141 (15) ◽  
pp. 4749-4756 ◽  
Author(s):  
Ellen F. M. Gabriel ◽  
Paulo T. Garcia ◽  
Thiago M. G. Cardoso ◽  
Flavio M. Lopes ◽  
Felipe T. Martins ◽  
...  

This paper describes the modification of microfluidic paper-based analytical devices (μPADs) with chitosan to improve the analytical performance of colorimetric measurements associated with enzymatic bioassays.


2015 ◽  
Vol 7 (20) ◽  
pp. 8977-8977
Author(s):  
Giacomo Musile ◽  
Ling Wang ◽  
Jashaun Bottoms ◽  
Franco Tagliaro ◽  
Bruce McCord

Correction for ‘The development of paper microfluidic devices for presumptive drug detection’ by Giacomo Musile et al., Anal. Methods, 2015, DOI: 10.1039/c5ay01432h.


Bioimpacts ◽  
2020 ◽  
Author(s):  
Bambang Kuswandi ◽  
Nur Andriani ◽  
Ari S Nugraha

Introduction: In this work, we used a thread-paper microfluidic device (μTPAD) system, where a threaded part for the handling of the whole blood samples and a paper part for the reaction of plasma with immobilized bioreagents integrated into woman pad as a wearable sensing device namely as smart women pad. The μTPAD as a wearable smart woman pad is developed for the detection of pH and urea in mensuration blood as real samples. Methods: This combined device was constructed to cover the elements required, that is, separation of red blood cell, conditioning, analyte reaction, and colorimetric detection. The color change in sensing areas was measured in the RGB values via a smartphone using the Color Grab after a smart woman pad was used. The thread allowed red blood cell sampling and separation, while the paper microfluidic device was used for conditioning, biorecognition, and colorimetric transduction of pH and urea as analytes. Results: The time needed for analysis was measured as 110 s using the equilibrium method for both analytes, with a limit of detection (LOD) of 72.55 μg/mL for urea, with precision around 1.68%, while for pH around 0.80%. The smart woman pad allowed rapid detection of pH and urea in menstruation blood as real samples for monitoring of the kidney functions, and the results showed an agreement with the conventional methods that have been generally used in the clinical laboratory. Conclusion: The smart woman pad has the potential to be used as a wearable device to monitor the health status of the user via its blood mensuration analysis.


2021 ◽  
Author(s):  
Samantha Richardson ◽  
Alexander Iles ◽  
Jeanette M. Rotchell ◽  
Tim Charlson ◽  
Annabel Hanson ◽  
...  

We demonstrate how a combination of paper microfluidic devices and handheld mobile technology can be used by citizen scientists to carry out a sustained water monitoring campaign. We have developed a paper-based analysis device and a 3 minute sampling workflow that requires no more than a container, a test device and a smartphone app. The contaminant measured in these pilots are phosphates, detectable down to 3 mg L<sup>-1</sup>. Together these allow volunteers to successfully carry out cost-effective, high frequency, phosphate monitoring over an extended geographies and periods.


Lab on a Chip ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 3337-3343 ◽  
Author(s):  
N. Raj ◽  
V. Breedveld ◽  
D. W. Hess

A fully enclosed paper microfluidic device has been fabricated using pentafluoroethane (PFE) plasma deposition followed by O2 plasma etching.


Micromachines ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 387
Author(s):  
Carlos Toshiyuki Matsumi ◽  
Wilson José da Silva ◽  
Fábio Kurt Schneider ◽  
Joaquim Miguel Maia ◽  
Rigoberto E. M. Morales ◽  
...  

Microbubbles have various applications including their use as carrier agents for localized delivery of genes and drugs and in medical diagnostic imagery. Various techniques are used for the production of monodisperse microbubbles including the Gyratory, the coaxial electro-hydrodynamic atomization (CEHDA), the sonication methods, and the use of microfluidic devices. Some of these techniques require safety procedures during the application of intense electric fields (e.g., CEHDA) or soft lithography equipment for the production of microfluidic devices. This study presents a hybrid manufacturing process using micropipettes and 3D printing for the construction of a T-Junction microfluidic device resulting in simple and low cost generation of monodisperse microbubbles. In this work, microbubbles with an average size of 16.6 to 57.7 μm and a polydispersity index (PDI) between 0.47% and 1.06% were generated. When the device is used at higher bubble production rate, the average diameter was 42.8 μm with increased PDI of 3.13%. In addition, a second-order polynomial characteristic curve useful to estimate micropipette internal diameter necessary to generate a desired microbubble size is presented and a linear relationship between the ratio of gaseous and liquid phases flows and the ratio of microbubble and micropipette diameters (i.e., Qg/Ql and Db/Dp) was found.


Sign in / Sign up

Export Citation Format

Share Document