scholarly journals Citizen-Led Sampling to Monitor Phosphate Levels in Freshwater Environments Using a Simple Paper Microfluidic Device

Author(s):  
Samantha Richardson ◽  
Alexander Iles ◽  
Jeanette M. Rotchell ◽  
Tim Charlson ◽  
Annabel Hanson ◽  
...  

We demonstrate how a combination of paper microfluidic devices and handheld mobile technology can be used by citizen scientists to carry out a sustained water monitoring campaign. We have developed a paper-based analysis device and a 3 minute sampling workflow that requires no more than a container, a test device and a smartphone app. The contaminant measured in these pilots are phosphates, detectable down to 3 mg L<sup>-1</sup>. Together these allow volunteers to successfully carry out cost-effective, high frequency, phosphate monitoring over an extended geographies and periods.

2021 ◽  
Author(s):  
Samantha Richardson ◽  
Alexander Iles ◽  
Jeanette M. Rotchell ◽  
Tim Charlson ◽  
Annabel Hanson ◽  
...  

We demonstrate how a combination of paper microfluidic devices and handheld mobile technology can be used by citizen scientists to carry out a sustained water monitoring campaign. We have developed a paper-based analysis device and a 3 minute sampling workflow that requires no more than a container, a test device and a smartphone app. The contaminant measured in these pilots are phosphates, detectable down to 3 mg L<sup>-1</sup>. Together these allow volunteers to successfully carry out cost-effective, high frequency, phosphate monitoring over an extended geographies and periods.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260102
Author(s):  
Samantha Richardson ◽  
Alexander Iles ◽  
Jeanette M. Rotchell ◽  
Tim Charlson ◽  
Annabel Hanson ◽  
...  

Contamination of waterways is of increasing concern, with recent studies demonstrating elevated levels of antibiotics, antidepressants, household, agricultural and industrial chemicals in freshwater systems. Thus, there is a growing demand for methods to rapidly and conveniently monitor contaminants in waterways. Here we demonstrate how a combination of paper microfluidic devices and handheld mobile technology can be used by citizen scientists to carry out a sustained water monitoring campaign. We have developed a paper-based analytical device and a 3 minute sampling workflow that requires no more than a container, a test device and a smartphone app. The contaminant measured in these pilots are phosphates, detectable down to 3 mg L-1. Together these allow volunteers to successfully carry out cost-effective, high frequency, phosphate monitoring over an extended geographies and periods.


The Analyst ◽  
2016 ◽  
Vol 141 (22) ◽  
pp. 6314-6320 ◽  
Author(s):  
Abdulghani Ismail ◽  
Marillya O. Araújo ◽  
Cyro L. S. Chagas ◽  
Sophie Griveau ◽  
Fanny D'Orlyé ◽  
...  

A disposable paper microfluidic device was developed to analyse different S-nitrosothiols simultaneously decomposed by Hg2+ as well as UV, Vis and IR lamps.


Lab on a Chip ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 3337-3343 ◽  
Author(s):  
N. Raj ◽  
V. Breedveld ◽  
D. W. Hess

A fully enclosed paper microfluidic device has been fabricated using pentafluoroethane (PFE) plasma deposition followed by O2 plasma etching.


2015 ◽  
Vol 7 (19) ◽  
pp. 8025-8033 ◽  
Author(s):  
Giacomo Musile ◽  
Ling Wang ◽  
Jashaun Bottoms ◽  
Franco Tagliaro ◽  
Bruce McCord

Colorimetric detection of morphine on a 6 channel paper microfluidic device.


Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 487
Author(s):  
Hongyan Xu ◽  
Zhangying Wu ◽  
Jinan Deng ◽  
Jun Qiu ◽  
Ning Hu ◽  
...  

The development of a simple, portable, and cost-effective plasma separation platform for blood biochemical analysis is of great interest in clinical diagnostics. We represent a plasma separation microfluidic device using microspheres with different sizes as the separation barrier. This plasma separation device, with 18 capillary microchannels, can extract about 3 μL of plasma from a 50 μL blood sample in about 55 min. The effects of evaporation and the microsphere barrier on the plasma biochemical analysis results were studied. Correction factors were applied to compensate for these two effects. The feasibility of the device in plasma biochemical analysis was validated with clinical blood samples.


2006 ◽  
Vol 13 (06) ◽  
pp. 795-802 ◽  
Author(s):  
DANIEL LIM ◽  
ERNA GONDO SANTOSO ◽  
KIM MING TEH ◽  
STEPHEN WAN ◽  
H. Y. ZHENG

Silicon has been widely used to fabricate microfluidic devices due to the dominance of silicon microfabrication technologies available. In this paper, theoretical analyses are carried out to suggest suitable laser machining parameters to achieve required channel geometries. Based on the analyses, a low-power CO 2 laser was employed to create microchannels in Acrylic substrate for the use of manufacturing an optical bubble switch. The developed equations are found useful for selecting appropriate machining parameters. The ability to use a low-cost CO 2 laser to fabricate microchannels provides an alternative and cost-effective method for prototyping fluid flow channels, chambers and cavities in microfluidic lab chips.


2016 ◽  
Vol 20 (12) ◽  
Author(s):  
Antonio Liga ◽  
Jonathan A. S. Morton ◽  
Maïwenn Kersaudy-Kerhoas

Micromachines ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 387
Author(s):  
Carlos Toshiyuki Matsumi ◽  
Wilson José da Silva ◽  
Fábio Kurt Schneider ◽  
Joaquim Miguel Maia ◽  
Rigoberto E. M. Morales ◽  
...  

Microbubbles have various applications including their use as carrier agents for localized delivery of genes and drugs and in medical diagnostic imagery. Various techniques are used for the production of monodisperse microbubbles including the Gyratory, the coaxial electro-hydrodynamic atomization (CEHDA), the sonication methods, and the use of microfluidic devices. Some of these techniques require safety procedures during the application of intense electric fields (e.g., CEHDA) or soft lithography equipment for the production of microfluidic devices. This study presents a hybrid manufacturing process using micropipettes and 3D printing for the construction of a T-Junction microfluidic device resulting in simple and low cost generation of monodisperse microbubbles. In this work, microbubbles with an average size of 16.6 to 57.7 μm and a polydispersity index (PDI) between 0.47% and 1.06% were generated. When the device is used at higher bubble production rate, the average diameter was 42.8 μm with increased PDI of 3.13%. In addition, a second-order polynomial characteristic curve useful to estimate micropipette internal diameter necessary to generate a desired microbubble size is presented and a linear relationship between the ratio of gaseous and liquid phases flows and the ratio of microbubble and micropipette diameters (i.e., Qg/Ql and Db/Dp) was found.


Sign in / Sign up

Export Citation Format

Share Document