Characterization and real-time imaging of the FTLD-related protein aggregation induced by amyloidogenic peptides

2015 ◽  
Vol 51 (41) ◽  
pp. 8652-8655 ◽  
Author(s):  
Ruei-Yu He ◽  
Yi-Chen Huang ◽  
Chao-Wei Chiang ◽  
Yu-Ju Tsai ◽  
Ting-Juan Ye ◽  
...  

Q/N- and G-rich polypeptides from the TDP-43 C-terminus formed amyloid fibers in vitro and induced the aggregation of the transfected TDP-43-EGFP in live cells.

Author(s):  
Kenneth H. Hu ◽  
John P. Eichorst ◽  
Chris S. McGinnis ◽  
David M. Patterson ◽  
Eric D. Chow ◽  
...  

ABSTRACTSpatial transcriptomics seeks to integrate single-cell transcriptomic data within the 3-dimensional space of multicellular biology. Current methods use glass substrates pre-seeded with matrices of barcodes or fluorescence hybridization of a limited number of probes. We developed an alternative approach, called ‘ZipSeq’, that uses patterned illumination and photocaged oligonucleotides to serially print barcodes (Zipcodes) onto live cells within intact tissues, in real-time and with on-the-fly selection of patterns. Using ZipSeq, we mapped gene expression in three settings: in-vitro wound healing, live lymph node sections and in a live tumor microenvironment (TME). In all cases, we discovered new gene expression patterns associated with histological structures. In the TME, this demonstrated a trajectory of myeloid and T cell differentiation, from periphery inward. A variation of ZipSeq efficiently scales to the level of single cells, providing a pathway for complete mapping of live tissues, subsequent to real-time imaging or perturbation.


2000 ◽  
Vol 113 (20) ◽  
pp. 3663-3671 ◽  
Author(s):  
M. Schrader ◽  
S.J. King ◽  
T.A. Stroh ◽  
T.A. Schroer

We have directly imaged the dynamic behavior of a variety of morphologically different peroxisomal structures in HepG2 and COS-7 cells transfected with a construct encoding GFP bearing the C-terminal peroxisomal targeting signal 1. Real time imaging revealed that moving peroxisomes interacted with each other and were engaged in transient contacts, and at higher magnification, tubular peroxisomes appeared to form a peroxisomal reticulum. Local remodeling of these structures could be observed involving the formation and detachment of tubular processes that interconnected adjacent organelles. Inhibition of cytoplasmic dynein based motility by overexpression of the dynactin subunit, dynamitin (p50), inhibited the movement of peroxisomes in vivo and interfered with the reestablishment of a uniform distribution of peroxisomes after recovery from nocodazole treatment. Isolated peroxisomes moved in vitro along microtubules in the presence of a microtubule motor fraction. Our data reveal that peroxisomal behavior in vivo is significantly more dynamic and interactive than previously thought and suggest a role for the dynein/dynactin motor in peroxisome motility.


2019 ◽  
Vol 5 (7) ◽  
pp. 3260-3269 ◽  
Author(s):  
Victor Prévost ◽  
Karine Anselme ◽  
Olivier Gallet ◽  
Mathilde Hindié ◽  
Tatiana Petithory ◽  
...  

2019 ◽  
Vol 6 (20) ◽  
pp. 1900778 ◽  
Author(s):  
Mashooq Khan ◽  
Weiwei Li ◽  
Sifeng Mao ◽  
Syed Niaz Ali Shah ◽  
Jin‐Ming Lin

2019 ◽  
Vol 2 (2) ◽  
pp. 42 ◽  
Author(s):  
Joel Heisler ◽  
Archana Chavan ◽  
Yong-Gang Chang ◽  
Andy LiWang

Uniquely, the circadian clock of cyanobacteria can be reconstructed outside the complex milieu of live cells, greatly simplifying the investigation of a functioning biological chronometer. The core oscillator component is composed of only three proteins, KaiA, KaiB, and KaiC, and together with ATP they undergo waves of assembly and disassembly that drive phosphorylation rhythms in KaiC. Typically, the time points of these reactions are analyzed ex post facto by denaturing polyacrylamide gel electrophoresis, because this technique resolves the different states of phosphorylation of KaiC. Here, we describe a more sensitive method that allows real-time monitoring of the clock reaction. By labeling one of the clock proteins with a fluorophore, in this case KaiB, the in vitro clock reaction can be monitored by fluorescence anisotropy on the minutes time scale for weeks.


2019 ◽  
Author(s):  
Eric O. McGhee ◽  
Alex J. McGhee ◽  
Derek L. Hood ◽  
Kylie E. Van Meter ◽  
Juan M. Urueña ◽  
...  

2016 ◽  
Vol 473 (23) ◽  
pp. 4443-4456 ◽  
Author(s):  
Adam Neal ◽  
Austin Rountree ◽  
Kelly Kernan ◽  
Brian Van Yserloo ◽  
Huiliang Zhang ◽  
...  

A real-time method to measure intracellular hydrogen peroxide (H2O2) would be very impactful in characterizing rapid changes that occur in physiologic and pathophysiologic states. Current methods do not provide the sensitivity, specificity and spatiotemporal resolution needed for such experiments on intact cells. We developed the use of HyPer, a genetic indicator for H2O2 that can be expressed in the cytosol (cyto-HyPer) or the mitochondria (mito-HyPer) of live cells. INS-1 cells or islets were permeabilized and the cytosolic HyPer signal was a linear function of extracellular H2O2, allowing fluorescent cyto-HyPer signals to be converted into H2O2 concentrations. Glucose increased cytosolic H2O2, an effect that was suppressed by overexpression of catalase. Large perturbations in pH can influence the HyPer signal, but inclusion of HEPES [4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid] in the perfusate prevented pH changes, but did not affect glucose-induced cyto-HyPer signals, suggesting that this effect is largely pH-independent. Using the assay, two fundamental questions were addressed. Knockdown of superoxide dismutase 2 (SOD2), the mitochondrial form of SOD, completely suppressed glucose-induced H2O2. Furthermore, glucose also induced mitochondrial superoxide and H2O2 production, which preceded the appearance of cytosolic H2O2. Therefore, glucose-induced H2O2 largely originated from mitochondria. Finally, the glucose-induced HyPer signal was less than 1/20th of that induced by toxic levels of H2O2. Overall, the use of HyPer for real-time imaging allowed resolution of acute changes in intracellular levels of H2O2 and will have great utility for islet studies involving mechanisms of H2O2-mediated signaling and oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document