scholarly journals Real-Time In Vitro Fluorescence Anisotropy of the Cyanobacterial Circadian Clock

2019 ◽  
Vol 2 (2) ◽  
pp. 42 ◽  
Author(s):  
Joel Heisler ◽  
Archana Chavan ◽  
Yong-Gang Chang ◽  
Andy LiWang

Uniquely, the circadian clock of cyanobacteria can be reconstructed outside the complex milieu of live cells, greatly simplifying the investigation of a functioning biological chronometer. The core oscillator component is composed of only three proteins, KaiA, KaiB, and KaiC, and together with ATP they undergo waves of assembly and disassembly that drive phosphorylation rhythms in KaiC. Typically, the time points of these reactions are analyzed ex post facto by denaturing polyacrylamide gel electrophoresis, because this technique resolves the different states of phosphorylation of KaiC. Here, we describe a more sensitive method that allows real-time monitoring of the clock reaction. By labeling one of the clock proteins with a fluorophore, in this case KaiB, the in vitro clock reaction can be monitored by fluorescence anisotropy on the minutes time scale for weeks.

Author(s):  
Kenneth H. Hu ◽  
John P. Eichorst ◽  
Chris S. McGinnis ◽  
David M. Patterson ◽  
Eric D. Chow ◽  
...  

ABSTRACTSpatial transcriptomics seeks to integrate single-cell transcriptomic data within the 3-dimensional space of multicellular biology. Current methods use glass substrates pre-seeded with matrices of barcodes or fluorescence hybridization of a limited number of probes. We developed an alternative approach, called ‘ZipSeq’, that uses patterned illumination and photocaged oligonucleotides to serially print barcodes (Zipcodes) onto live cells within intact tissues, in real-time and with on-the-fly selection of patterns. Using ZipSeq, we mapped gene expression in three settings: in-vitro wound healing, live lymph node sections and in a live tumor microenvironment (TME). In all cases, we discovered new gene expression patterns associated with histological structures. In the TME, this demonstrated a trajectory of myeloid and T cell differentiation, from periphery inward. A variation of ZipSeq efficiently scales to the level of single cells, providing a pathway for complete mapping of live tissues, subsequent to real-time imaging or perturbation.


2020 ◽  
Vol 35 (3) ◽  
pp. 227-234 ◽  
Author(s):  
Pyonghwa Kim ◽  
Brianna Porr ◽  
Tetsuya Mori ◽  
Yong-Sung Kim ◽  
Carl H. Johnson ◽  
...  

The circadian clock is a timekeeping system in most organisms that keeps track of the time of day. The rhythm generated by the circadian oscillator must be constantly synchronized with the environmental day/night cycle to make the timekeeping system truly advantageous. In the cyanobacterial circadian clock, quinone is a biological signaling molecule used for entraining and fine-tuning the oscillator, a process in which the external signals are transduced into biological metabolites that adjust the phase of the circadian oscillation. Among the clock proteins, the pseudo-receiver domain of KaiA and CikA can sense external cues by detecting the oxidation state of quinone, a metabolite that reflects the light/dark cycle, although the molecular mechanism is not fully understood. Here, we show the antagonistic phase shifts produced by the quinone sensing of KaiA and CikA. We introduced a new cyanobacterial circadian clock mixture that includes an input component in vitro. KaiA and CikA cause phase advances and delays, respectively, in this circadian clock mixture in response to the quinone signal. In the entrainment process, oxidized quinone modulates the functions of KaiA and CikA, which dominate alternatively at day and night in the cell. This in turn changes the phosphorylation state of KaiC—the central oscillator in cyanobacteria—ensuring full synchronization of the circadian clock. Moreover, we reemphasize the mechanistic input functionality of CikA, contrary to other reports that focus only on its output action.


2019 ◽  
Vol 202 (4) ◽  
Author(s):  
Anika Wiegard ◽  
Christin Köbler ◽  
Katsuaki Oyama ◽  
Anja K. Dörrich ◽  
Chihiro Azai ◽  
...  

ABSTRACT Cyanobacteria form a heterogeneous bacterial group with diverse lifestyles, acclimation strategies, and differences in the presence of circadian clock proteins. In Synechococcus elongatus PCC 7942, a unique posttranslational KaiABC oscillator drives circadian rhythms. ATPase activity of KaiC correlates with the period of the clock and mediates temperature compensation. Synechocystis sp. strain PCC 6803 expresses additional Kai proteins, of which KaiB3 and KaiC3 proteins were suggested to fine-tune the standard KaiAB1C1 oscillator. In the present study, we therefore characterized the enzymatic activity of KaiC3 as a representative of nonstandard KaiC homologs in vitro. KaiC3 displayed ATPase activity lower than that of the Synechococcus elongatus PCC 7942 KaiC protein. ATP hydrolysis was temperature dependent. Hence, KaiC3 is missing a defining feature of the model cyanobacterial circadian oscillator. Yeast two-hybrid analysis showed that KaiC3 interacts with KaiB3, KaiC1, and KaiB1. Further, KaiB3 and KaiB1 reduced in vitro ATP hydrolysis by KaiC3. Spot assays showed that chemoheterotrophic growth in constant darkness is completely abolished after deletion of ΔkaiAB1C1 and reduced in the absence of kaiC3. We therefore suggest a role for adaptation to darkness for KaiC3 as well as a cross talk between the KaiC1- and KaiC3-based systems. IMPORTANCE The circadian clock influences the cyanobacterial metabolism, and deeper understanding of its regulation will be important for metabolic optimizations in the context of industrial applications. Due to the heterogeneity of cyanobacteria, characterization of clock systems in organisms apart from the circadian model Synechococcus elongatus PCC 7942 is required. Synechocystis sp. strain PCC 6803 represents a major cyanobacterial model organism and harbors phylogenetically diverged homologs of the clock proteins, which are present in various other noncyanobacterial prokaryotes. By our in vitro studies we unravel the interplay of the multiple Synechocystis Kai proteins and characterize enzymatic activities of the nonstandard clock homolog KaiC3. We show that the deletion of kaiC3 affects growth in constant darkness, suggesting its involvement in the regulation of nonphotosynthetic metabolic pathways.


2015 ◽  
Vol 51 (41) ◽  
pp. 8652-8655 ◽  
Author(s):  
Ruei-Yu He ◽  
Yi-Chen Huang ◽  
Chao-Wei Chiang ◽  
Yu-Ju Tsai ◽  
Ting-Juan Ye ◽  
...  

Q/N- and G-rich polypeptides from the TDP-43 C-terminus formed amyloid fibers in vitro and induced the aggregation of the transfected TDP-43-EGFP in live cells.


2002 ◽  
Vol 124 (4) ◽  
pp. 910-921 ◽  
Author(s):  
S. C. Gu¨len ◽  
P. R. Griffin ◽  
S. Paolucci

This paper describes the results of real-time, on-line performance monitoring of two gas turbines over a period of five months in 1997. A commercially available software system is installed to monitor, analyze and store measurements obtained from the plant’s distributed control system. The software is installed in a combined-cycle, cogeneration power plant, located in Massachusetts, USA, with two Frame 7EA gas turbines in Apr. 1997. Vendor’s information such as correction and part load performance curves are utilized to calculate expected engine performance and compare it with measurements. In addition to monitoring the general condition and performance of the gas turbines, user-specified financial data is used to determine schedules for compressor washing and inlet filter replacement by balancing the associated costs with lost revenue. All measurements and calculated information are stored in databases for real-time and historical trending and tabulating. The data is analyzed ex post facto to identify salient performance and maintenance issues.


2004 ◽  
Vol 24 (2) ◽  
pp. 584-594 ◽  
Author(s):  
Choogon Lee ◽  
David R. Weaver ◽  
Steven M. Reppert

ABSTRACT The mPER1 and mPER2 proteins have important roles in the circadian clock mechanism, whereas mPER3 is expendable. Here we examine the posttranslational regulation of mPER3 in vivo in mouse liver and compare it to the other mPER proteins to define the salient features required for clock function. Like mPER1 and mPER2, mPER3 is phosphorylated, changes cellular location, and interacts with other clock proteins in a time-dependent manner. Consistent with behavioral data from mPer2/3 and mPer1/3 double-mutant mice, either mPER1 or mPER2 alone can sustain rhythmic posttranslational events. However, mPER3 is unable to sustain molecular rhythmicity in mPer1/2 double-mutant mice. Indeed, mPER3 is always cytoplasmic and is not phosphorylated in the livers of mPer1-deficient mice, suggesting that mPER3 is regulated by mPER1 at a posttranslational level. In vitro studies with chimeric proteins suggest that the inability of mPER3 to support circadian clock function results in part from lack of direct and stable interaction with casein kinase Iε (CKIε). We thus propose that the CKIε-binding domain is critical not only for mPER phosphorylation but also for a functioning circadian clock.


2009 ◽  
Vol 29 (14) ◽  
pp. 3853-3866 ◽  
Author(s):  
Jean-Pierre Etchegaray ◽  
Kazuhiko K. Machida ◽  
Elizabeth Noton ◽  
Cara M. Constance ◽  
Robert Dallmann ◽  
...  

ABSTRACT Both casein kinase 1 delta (CK1δ) and epsilon (CK1ε) phosphorylate core clock proteins of the mammalian circadian oscillator. To assess the roles of CK1δ and CK1ε in the circadian clock mechanism, we generated mice in which the genes encoding these proteins (Csnk1d and Csnk1e, respectively) could be disrupted using the Cre-loxP system. Cre-mediated excision of the floxed exon 2 from Csnk1d led to in-frame splicing and production of a deletion mutant protein (CK1δΔ2). This product is nonfunctional. Mice homozygous for the allele lacking exon 2 die in the perinatal period, so we generated mice with liver-specific disruption of CK1δ. In livers from these mice, daytime levels of nuclear PER proteins, and PER-CRY-CLOCK complexes were elevated. In vitro, the half-life of PER2 was increased by ∼20%, and the period of PER2::luciferase bioluminescence rhythms was 2 h longer than in controls. Fibroblast cultures from CK1δ-deficient embryos also had long-period rhythms. In contrast, disruption of the gene encoding CK1ε did not alter these circadian endpoints. These results reveal important functional differences between CK1δ and CK1ε: CK1δ plays an unexpectedly important role in maintaining the 24-h circadian cycle length.


2020 ◽  
Author(s):  
Archana G. Chavan ◽  
Dustin C. Ernst ◽  
Mingxu Fang ◽  
Cigdem Sancar ◽  
Carrie L. Partch ◽  
...  

AbstractCircadian clocks control gene expression in the complex milieu of cells. Here, we reconstituted under defined conditions in vitro the cyanobacterial circadian clock system which includes an oscillator, signal-transduction pathways, transcription factor, and promoter DNA. The system oscillates autonomously with a near 24 h period, remains phase coherent for many days, and allows real-time observation of each component simultaneously without user intervention. This reassembled clock system provides new insights into how a circadian clock exerts control over gene expression and can serve in the area of synthetic biology as a new platform upon which to build even more complexity.One Sentence SummaryAn autonomously oscillating circadian clock-controlled gene regulatory circuit is studied in vitro using a real-time high-throughput assay.


Sign in / Sign up

Export Citation Format

Share Document