Atomic layer deposited tungsten nitride thin films as a new lithium-ion battery anode

2015 ◽  
Vol 17 (26) ◽  
pp. 17445-17453 ◽  
Author(s):  
Dip K. Nandi ◽  
Uttam K. Sen ◽  
Soumyadeep Sinha ◽  
Arpan Dhara ◽  
Sagar Mitra ◽  
...  

Atomic layer deposited WNx thin films are used as a new Li-ion battery anode whose capacity can be enhanced further by depositing the film on a MWCNT scaffold layer.

RSC Advances ◽  
2015 ◽  
Vol 5 (5) ◽  
pp. 3299-3305 ◽  
Author(s):  
Mokwon Kim ◽  
Do Youb Kim ◽  
Yongku Kang ◽  
O. Ok Park

A highly flexible graphene paper assembled from graphene nanoplatelets and graphene oxides is fabricated and shows high electrochemical performance as a Li-ion battery anode.


Nanoscale ◽  
2014 ◽  
Vol 6 (22) ◽  
pp. 13660-13667 ◽  
Author(s):  
Xudong Liu ◽  
Yingchun Lyu ◽  
Zhihua Zhang ◽  
Hong Li ◽  
Yong-sheng Hu ◽  
...  

Carbon-coated Li2MoO4 nanotubes fabricated by sol–gel method exhibit an excellent electrochemical performance when evaluated as an anode material for Li-ion battery.


2016 ◽  
Vol 45 (47) ◽  
pp. 19109-19116 ◽  
Author(s):  
Teng Gong ◽  
Xiaobing Lou ◽  
Jia-Jia Fang ◽  
En-Qing Gao ◽  
Bingwen Hu

A Co(ii) coordination polymer with azide and a viologen-based tetracarboxylate ligand shows a relatively high reversible capacity with good cycling and rate performance as lithium-ion battery anode.


2007 ◽  
Vol 165 (1) ◽  
pp. 379-385 ◽  
Author(s):  
Mark Q. Snyder ◽  
Svetlana A. Trebukhova ◽  
Boris Ravdel ◽  
M. Clayton Wheeler ◽  
Joseph DiCarlo ◽  
...  

Nanoscale ◽  
2021 ◽  
Author(s):  
Kun Wang ◽  
Yongyuan Hu ◽  
Jian Pei ◽  
Fengyang Jing ◽  
Zhongzheng Qin ◽  
...  

High capacity Co2VO4 becomes a potential anode material for lithium ion batteries (LIBs) benefiting from its lower output voltage during cycling than other cobalt vanadates. However, the application of this...


2020 ◽  
Vol 9 (2) ◽  
pp. 151-157
Author(s):  
Snigdha Sharma ◽  
Amrish Kumar Panwar ◽  
Madan Mohan Tripathi

In the present time, the rechargeable lithium-ion battery is being commercialized to meet the sustained market’s demands. To design a more reliable, safe, and efficient Li-ion battery, a 3-D simulation study has been presented in this paper. In this study, a lithium-ion coin-cell is proposed which has LiFePO4 as a positive electrode with a thickness of 1.76 µm, carbon as a negative electrode with a thickness of 2.50 µm and Celgard 2400 polypropylene sheet as a separator between the electrodes with a thickness of 2 µm. The proposed Li-ion battery has been designed, analyzed, and optimized with the help of Multiphysics software. The simulation study has been performed to analyze the electrochemical properties such as cyclic voltammetry (CV) and impedance spectroscopy (EIS). Moreover, the electrical and thermal properties at the microscopic level are investigated and optimized in terms of surface potential distribution, the concentration of electrolyte, open circuit, and surface temperature with respect to time. It has been noticed that the peak voltage, 3.45 V is observed as the temperature distribution on the surface varies from 0 OC to 80 OC at a microscopic scale with different C-rates. The analysis of simulation results indicates a smoother electrode surface with uniform electrical and thermal properties distribution resulting in improved reliability of the battery. The performed simulation and optimization are helpful to achieve control over battery performance and safe usage without any degradation of the environment.©2020. CBIORE-IJRED. All rights reserved.


RSC Advances ◽  
2015 ◽  
Vol 5 (71) ◽  
pp. 57666-57670 ◽  
Author(s):  
Chandrasekar Perumal Veeramalai ◽  
Fushan Li ◽  
Hongyuan Xu ◽  
Tae Whan Kim ◽  
Tailiang Guo

The excellent performance of hydrothermally synthesized MoS2 few layer nanosheets as a Li-ion battery anode material is demonstrated.


RSC Advances ◽  
2016 ◽  
Vol 6 (44) ◽  
pp. 38024-38032 ◽  
Author(s):  
Dip K. Nandi ◽  
Uttam K. Sen ◽  
Arpan Dhara ◽  
Sagar Mitra ◽  
Shaibal K. Sarkar

ALD grown WS2 films are recommended to use as intercalation material in Li-ion battery because of its excellent electrochemical stability.


RSC Advances ◽  
2015 ◽  
Vol 5 (7) ◽  
pp. 4747-4753 ◽  
Author(s):  
Manohar Kakunuri ◽  
Sheetal Vennamalla ◽  
Chandra S. Sharma

Resorcinol–formaldehyde (RF) derived carbon xerogel nanoparticles synthesized by inverse emulsification followed by drying and pyrolysis exhibited excellent electrochemical characteristics and thus find potential use as high capacity anode materials for Li ion battery.


2013 ◽  
Vol 380-384 ◽  
pp. 3374-3377
Author(s):  
San Xing Chen ◽  
Ming Yu Gao ◽  
Guo Jin Ma ◽  
Zhi Wei He

In this paper, a cell equalization circuit based on the Flyback topology is proposed for the Lithium-ion battery pack. Multiple transformers are employed in this circuit, equal to the number of cells in the pack. All the primary windings are coupled in series to provide the equalizing energy form the whole battery pack to the specific under charged cells. The structure and principle of the circuit is discussed, finally a prototype of four cells is presented to show the outstanding equalization efficiency of the proposed circuit.


Sign in / Sign up

Export Citation Format

Share Document