Fabrication and characterization of a highly sensitive hydroquinone chemical sensor based on iron-doped ZnO nanorods

2015 ◽  
Vol 44 (48) ◽  
pp. 21081-21087 ◽  
Author(s):  
Ahmad Umar ◽  
Ali Al-Hajry ◽  
Rafiq Ahmad ◽  
S. G. Ansari ◽  
Mohammed Sultan Al-Assiri ◽  
...  

Herein, we report the development of a simple and highly sensitive hydroquinone (HQ) chemical sensor based on an electrochemically activated iron-doped zinc oxide nanorod modified screen-printed electrode.

Materials ◽  
2017 ◽  
Vol 10 (7) ◽  
pp. 799 ◽  
Author(s):  
Qu Zhou ◽  
ChangXiang Hong ◽  
Yao Yao ◽  
Ahmed Ibrahim ◽  
Lingna Xu ◽  
...  

2019 ◽  
Vol 19 (6) ◽  
pp. 3637-3642 ◽  
Author(s):  
Yas Al-Hadeethi ◽  
Ahmad Umar ◽  
Kulvinder Singh ◽  
Ahmed A Ibrahim ◽  
Saleh. H Al-Heniti ◽  
...  

Herein, we report the synthesis, characterization and picric acid chemical sensing application of samarium (Sm) doped ZnO nanorods. The Sm-doped ZnO nanorods were synthesized by facile hydrothermal process and characterized using various analytical methods which confirmed the large-scale synthesis and wurtzite hexagonal crystal structure for the synthesized nanorods. The doping of Sm ions in the lattices of the synthesized nanorods was evaluated by the energy dispersive X-ray spectroscopy (EDS). The synthesized Sm-doped ZnO nanorods were used as potential scaffold to fabricate high sensitive and reproducible picric acid chemical sensor based on I–V technique. The fabricated picric acid chemical sensor based on Sm-doped ZnO nanorods exhibited a high sensitivity of 213.9 mA mM−1 cm−2 with the limit of detection of ∼0.228 mM and correlation coefficient of R═0.9889. The obtained results revealed that the facile grown Sm-doped ZnO nanorods can efficiently be used to fabricate high sensitive and reproducible chemical sensors.


Author(s):  
Chiung-Hsien Huang ◽  
Yen-Lin Chu ◽  
Liang-Wen Ji ◽  
I-Tseng Tang ◽  
Tung-Te Chu ◽  
...  

2016 ◽  
Vol 8 (7) ◽  
pp. 555-560 ◽  
Author(s):  
Zeenat Khatoon ◽  
Taimur Athar ◽  
H. Fouad ◽  
A. Umar ◽  
Z. A. Ansari ◽  
...  

Proceedings ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. 39
Author(s):  
Zahira. El khalidi ◽  
Maryam Siadat ◽  
Elisabetta. Comini ◽  
Salah. Fadili ◽  
Philippe. Thevenin

Chemical gas sensors were studied long ago and nowadays, for the advantageous role they provide to the environment, health condition monitoring and protection. The recent studies focus on the semiconductors sensing abilities, especially of non toxic and low cost compounds. The present work describes the steps to elaborate and perform a chemical sensor using intrinsic and doped semiconductor zinc oxide. First, we synthesized pure oxide using zinc powder, then, two other samples were established where we introduced the same doping percentage of Al and Sn respectively. Using low cost spray pyrolysis, and respecting the same conditions of preparation. The obtained samples were then characterized by X Ray Diffraction (XRD) that revealed the hexagonal wurzite structure and higher crystallite density towards the direction (002), besides the appearance of the vibration modes related to zinc oxide, confirmed by Raman spectroscopy. SEM spectroscopy showed that the surface morphology is ideal for oxidizing/reduction reactions, due to the porous structure and the low grain sizes, especially observed for the sample Sn doped ZnO. The gas testing confirms these predictions showing that the highest response is related to Sn doped ZnO compared to ZnO and followed by Al doped ZnO. The films exhibited responses towards: CO, acetone, methanol, H2, ammonia and NO2. The concentrations were varied from 10 to 500 ppm and the working temperatures from 250 to 500°C, the optimal working temperatures were 350 and 400 °C. Sn doped ZnO showed a high response towards H2 gas target, with a sensitivity reaching 200 at 500 ppm, for 400 °C.


Sign in / Sign up

Export Citation Format

Share Document