A high performance sulfur-doped disordered carbon anode for sodium ion batteries

2015 ◽  
Vol 8 (10) ◽  
pp. 2916-2921 ◽  
Author(s):  
Wei Li ◽  
Min Zhou ◽  
Haomiao Li ◽  
Kangli Wang ◽  
Shijie Cheng ◽  
...  

Sulfur-doped disordered carbon exhibits high capacity and excellent cyclability as an anode for sodium ion batteries.

Author(s):  
Irshad Mohammad ◽  
Lucie Blondeau ◽  
Eddy Foy ◽  
Jocelyne Leroy ◽  
Eric Leroy ◽  
...  

Following the trends of alloys as negative electrodes for Na-ion batteries, the sodiation of the InSb intermetallic compound was investigated for the first time. The benefit of coupling Sb with...


2021 ◽  
Vol 1044 ◽  
pp. 25-39
Author(s):  
Hafid Khusyaeri ◽  
Dewi Pratiwi ◽  
Haris Ade Kurniawan ◽  
Anisa Raditya Nurohmah ◽  
Cornelius Satria Yudha ◽  
...  

The battery is a storage medium for electrical energy for electronic devices developed effectively and efficiently. Sodium ion battery provide large-scale energy storage systems attributed to the natural existence of the sodium element on earth. The relatively inexpensive production costs and abundant sodium resources in nature make sodium ion batteries attractive to research. Currently, sodium ion batteries electrochemical performance is still less than lithium-ion batteries. The electrochemical performance of a sodium ion battery depends on the type of electrode material used in the manufacture of the batteries.. The main problem is to find a suitable electrode material with a high specific capacity and is stable. It is a struggle to increase the performance of sodium ion batteries. This literature study studied how to prepare high-performance sodium battery anodes through salt doping. The doping method is chosen to increase conductivity and electron transfer. Besides, this method still takes into account the factors of production costs and safety. The abundant coffee waste biomass in Indonesia was chosen as a precursor to preparing a sodium ion battery hard carbon anode to overcome environmental problems and increase the economic value of coffee grounds waste. Utilization of coffee grounds waste as hard carbon is an innovative solution to the accumulation of biomass waste and supports environmentally friendly renewable energy sources in Indonesia.


Nanoscale ◽  
2019 ◽  
Vol 11 (46) ◽  
pp. 22196-22205 ◽  
Author(s):  
Xinlong Chen ◽  
Yuheng Zheng ◽  
Wenjian Liu ◽  
Can Zhang ◽  
Sa Li ◽  
...  

SIB with hard carbon anode is getting competitive vs. LIB, but one needs to be careful in assessing capacity and cycle life with conventional half-cell tests. New guidelines are provided for half-cell and full-cell tests and understanding the results.


2021 ◽  
Author(s):  
Francielli Genier ◽  
Shreyas Pathreeker ◽  
Robson Schuarca ◽  
Mohammad Islam ◽  
Ian Hosein

Deriving battery grade materials from natural sources is a key element to establishing sustainable energy storage technologies. In this work, we present the use of avocado peels as a sustainable source for conversion into hard carbon based anodes for sodium ion batteries. The avocado peels are simply washed and dried then proceeded to a high temperature conversion step. Materials characterization reveals conversion of the avocado peels in high purity, highly porous hard carbon powders. When prepared as anode materials they show to the capability to reversibly store and release sodium ions. The hard carbon-based electrodes exhibit excellent cycling performance, namely, a reversible capacity of 352.55 mAh/g at 0.05 A/g, rate capability up to 86 mAh/g at 3500 mA/g, capacity retention of >90%, and 99.9% coulombic efficiencies after 500 cycles. This study demonstrates avocado derived hard carbon as a sustainable source that can provide excellent electrochemical and battery performance as anodes in sodium ion batteries.


2016 ◽  
Vol 6 (6) ◽  
pp. 1501929 ◽  
Author(s):  
Dingfeng Xu ◽  
Chaoji Chen ◽  
Jia Xie ◽  
Bao Zhang ◽  
Ling Miao ◽  
...  

2020 ◽  
Vol 4 (4) ◽  
pp. 184
Author(s):  
Jiyu Cai ◽  
Zonghai Chen ◽  
Xiangbo Meng

Sodium-ion batteries (SIBs) have attracted increasing attention for storing renewable clean energy, owing to their cost-effectiveness. Nonetheless, SIBs still remain significant challenges in terms of the availability of suitable anode materials with high capacities and good rate capabilities. Our previous work has developed and verified that Cu2S wrapped by nitrogen-doped graphene (i.e., Cu2S@NG composite), as an anode in SIBs, could exhibit a superior performance with ultralong cyclability and excellent rate capability, mainly due to the multifunctional roles of NG. However, the Cu2S@NG anode still suffers from continuous parasitic reactions at low potentials, causing a rapid performance deterioration. In this study, we investigated the effects of a conformal Al2O3 coating via atomic layer deposition (ALD) on the interfacial stability of the Cu2S@NG anode. As a consequence, the ALD-coated Cu2S@NG electrode can deliver a high capacity of 374 mAh g−1 at a current density of 100 mA g−1 and achieve a capacity retention of ~100% at different rates. This work verified that surface modification via ALD is a viable route for improving SIBs’ performances.


Author(s):  
Fei Zhang ◽  
Tao Jing ◽  
Shao Cai ◽  
Mingsen Deng ◽  
Dongmei Liang ◽  
...  

Rational design of high-performance anode materials is of paramount importance for developing rechargeable lithium ion batteries (LIBs) and sodium ion batteries (SIBs). In this work, ZrC2 monolayer is predicted by...


Author(s):  
Ying Li ◽  
Xia Zhong ◽  
Xianwen Wu ◽  
Mingqi Li ◽  
Wei Zhang ◽  
...  

To develop high-performance and low-cost anode materials for sodium ion batteries, novel Bi/C nanosheet microspheres with open pore structure (labeled as ops-Bi/C nanosheet microspheres), in which nanosheets are assembled from...


Sign in / Sign up

Export Citation Format

Share Document