scholarly journals Anisotropic responsive microgels with tuneable shape and interactions

Nanoscale ◽  
2015 ◽  
Vol 7 (38) ◽  
pp. 15971-15982 ◽  
Author(s):  
Jérôme J. Crassous ◽  
Adriana M. Mihut ◽  
Linda K. Månsson ◽  
Peter Schurtenberger

Spherical composite responsive microgels were post-processed into various anisotropic shapes providing new opportunities to investigate complex phase diagrams and self-assembly processes.

Soft Matter ◽  
2021 ◽  
Author(s):  
Zhiyao Liu ◽  
Zheng Wang ◽  
Yuhua Yin ◽  
Run Jiang ◽  
Baohui Li

Phase behavior of ABC star terpolymers confined between two identical parallel surfaces is systematically studied with a simulated annealing method. Several phase diagrams are constructed for systems with different bulk...


2019 ◽  
Vol 675 ◽  
pp. 84-91 ◽  
Author(s):  
Clément Mailhé ◽  
Marie Duquesne ◽  
Imane Mahroug ◽  
Elena Palomo del Barrio

Soft Matter ◽  
2017 ◽  
Vol 13 (36) ◽  
pp. 6178-6188 ◽  
Author(s):  
Haina Tan ◽  
Chunyang Yu ◽  
Zhongyuan Lu ◽  
Yongfeng Zhou ◽  
Deyue Yan

This work discloses for the first time the self-assembly phase diagrams of amphiphilic hyperbranched multiarm copolymers in various solvents by dissipative particle dynamics simulations.


Author(s):  
Tommaso Fraccia ◽  
Tony Z. Jia

<p>Phase separation of nucleic acids and proteins is a ubiquitous phenomenon regulating sub-cellular compartment structure and function. While complex coacervation of flexible single stranded nucleic acids is broadly investigated, coacervation of double stranded DNA (dsDNA) is less studied because of its propensity to generate solid precipitates. Here, we reverse this perspective by showing that short dsDNA and poly-L-lysine coacervates can escape precipitation while displaying a surprisingly complex phase diagram, including the full set of liquid crystal (LC) mesophases observed to date in bulk dsDNA. LC-coacervate structure was characterized upon variations in temperature and monovalent salt, DNA and peptide concentrations, which allow continuous transitions between all accessible phases. A deeper understanding of LC-coacervates can gain insights to decipher structures and phase transition mechanisms within biomolecular condensates, to design stimuli-responsive multi-phase synthetic compartments with different degrees of order and to exploit self-assembly driven cooperative prebiotic evolution of nucleic acids and peptides.</p>


2019 ◽  
Vol 4 (1) ◽  
pp. 122-132 ◽  
Author(s):  
Yusei Kobayashi ◽  
Takuya Inokuchi ◽  
Atushi Nishimoto ◽  
Noriyoshi Arai

We have performed coarse-grained molecular simulations to investigate the morphologies and phase diagrams of self-assembled spheroidal triblock Janus nanoparticles (JNPs) confined in nanotubes.


2020 ◽  
Vol 63 (5) ◽  
pp. 417-439 ◽  
Author(s):  
V N Ryzhov ◽  
E E Tareyeva ◽  
Yu D Fomin ◽  
E N Tsiok

2015 ◽  
Vol 17 (4) ◽  
pp. 2246-2262 ◽  
Author(s):  
Marie-Aline Van Ende ◽  
In-Ho Jung ◽  
Yong-Hwan Kim ◽  
Taek-Soo Kim

The developed thermodynamic database for the Dy–Nd–Fe–B–Mg system enables the calculation of complex phase diagrams for the selective recovery of Nd and Dy from NdFeB magnet scrap using the liquid metal extraction process.


2000 ◽  
Vol 55 (7) ◽  
pp. 627-637 ◽  
Author(s):  
P. Schmidt ◽  
H. Oppermann

Abstract Pseudoternary System Bi2O3/Bi2Se3/Bi2Te3, Phase Diagram, Thermodynamic Data The phase diagram of the pseudoternary system Bi2O3/Bi2Se3/Bi2Te3 is found to include a quaternary solid solution Bi2O2 (TexSe1-x) and ternary, intermetallic mixed crystals Bi2(TexSe1-x)3. Using thermodynamic modeling of the solid solutions it is possible to calcu­ late complex heterogeneous equilibria between all phases of this phase diagram. As a result we can thermodynamically describe the observed phase relations:Bi2(TexSe1-x)3 ⊿H°m(298) = 0; ⊿S°m(298) = R[xlnx + (1-x)ln(1-x)]Bi2O2(TexSe1-x) ⊿H°m(298) = Ω · x(1-x); O⊿S°m(298) = R/4 [xlnx + (1-x)ln(1-x)]Ω = 0,6 kcal/mol


Sign in / Sign up

Export Citation Format

Share Document