scholarly journals Photochemical processes induced by the irradiation of 4-hydroxybenzophenone in different solvents

2015 ◽  
Vol 14 (11) ◽  
pp. 2087-2096 ◽  
Author(s):  
Francesco Barsotti ◽  
Marcello Brigante ◽  
Mohamed Sarakha ◽  
Valter Maurino ◽  
Claudio Minero ◽  
...  

The singlet and triplet excited states of 4-hydroxybenzophenone (4BPOH) undergo deprotonation in the presence of water to produce the anionic ground-state, causing fluorescence quenching and photoactivity inhibition.

2003 ◽  
Vol 68 (1) ◽  
pp. 47-60 ◽  
Author(s):  
Devarajan Ajitha ◽  
Kimihiko Hirao ◽  
Sourav Pal

Using the Fock space multireference coupled-cluster (FS-MRCC) analytical linear response approach, we report the dipole moments of low-lying singlet and triplet excited states of ozone. The low-lying singlet and triplet excited states are calculated at the ground-state geometry and at the adiabatic geometry for the 1A2 and 1B1. For comparison we also calculate at the ground-state geometry the dipole moments of the 1A2, 1B1 and 1B2 using multireference configuration interaction (MRCI) with a bigger VQZ basis and complete active space. We also report as by-product the excitation energy values in the singles and doubles approximation. At the ground-state geometry we also report the energy and the dipole moments of the 2A1, 2A2 and 2B1 states of the ozone radical cation. The energy of the ozone cation radical is compared with the other correlated approaches. It matches well with the experimental values.


1999 ◽  
Vol 19 (1-4) ◽  
pp. 343-348 ◽  
Author(s):  
R. Anandhi ◽  
G. Balakrishnan ◽  
P. Mohandas ◽  
S. Umapathy

This paper reports the TR3 spectral studies on perfluorinated organic systems with the objective to understand the influence of perfluorination on the excited states. We have recorded the TR3 spectra and Raman excitation profiles of the triplet excited states of decafluorobenzophenone and fluoranil. It is found that the influence of perfluorination is more pronounced in the triplet excited state than the ground state and thus leads to enhanced reactivity for perfluorinated compounds through larger structural distortions.


Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3157
Author(s):  
Kelechi O. Uleanya ◽  
Rosaria Cercola ◽  
Maria Nikolova ◽  
Edward Matthews ◽  
Natalie G. K. Wong ◽  
...  

We present the first study to measure the dissociative photochemistry of 2-thiouracil (2-TU), an important nucleobase analogue with applications in molecular biology and pharmacology. Laser photodissociation spectroscopy is applied to the deprotonated and protonated forms of 2-TU, which are produced in the gas-phase using electrospray ionization mass spectrometry. Our results show that the deprotonated form of 2-thiouracil ([2-TU-H]−) decays predominantly by electron ejection and hence concomitant production of the [2-TU-H]· free-radical species, following photoexcitation across the UVA-UVC region. Thiocyanate (SCN−) and a m/z 93 fragment ion are also observed as photodecay products of [2-TU-H]− but at very low intensities. Photoexcitation of protonated 2-thiouracil ([2-TU·H]+) across the same UVA-UVC spectral region produces the m/z 96 cationic fragment as the major photofragment. This ion corresponds to ejection of an HS· radical from the precursor ion and is determined to be a product of direct excited state decay. Fragment ions associated with decay of the hot ground state (i.e., the ions we would expect to observe if 2-thiouracil was behaving like UV-dissipating uracil) are observed as much more minor products. This behaviour is consistent with enhanced intersystem crossing to triplet excited states compared to internal conversion back to the ground state. These are the first experiments to probe the effect of protonation/deprotonation on thionucleobase photochemistry, and hence explore the effect of pH at a molecular level on their photophysical properties.


2019 ◽  
Author(s):  
Matthew M. Brister ◽  
Carlos Crespo-Hernández

<p></p><p> Damage to RNA from ultraviolet radiation induce chemical modifications to the nucleobases. Unraveling the excited states involved in these reactions is essential, but investigations aimed at understanding the electronic-energy relaxation pathways of the RNA nucleotide uridine 5’-monophosphate (UMP) have not received enough attention. In this Letter, the excited-state dynamics of UMP is investigated in aqueous solution. Excitation at 267 nm results in a trifurcation event that leads to the simultaneous population of the vibrationally-excited ground state, a longlived <sup>1</sup>n<sub>O</sub>π* state, and a receiver triplet state within 200 fs. The receiver state internally convert to the long-lived <sup>3</sup>ππ* state in an ultrafast time scale. The results elucidate the electronic relaxation pathways and clarify earlier transient absorption experiments performed for uracil derivatives in solution. This mechanistic information is important because long-lived nπ* and ππ* excited states of both singlet and triplet multiplicities are thought to lead to the formation of harmful photoproducts.</p><p></p>


2002 ◽  
Vol 67 (8) ◽  
pp. 1154-1164 ◽  
Author(s):  
Nachiappan Radha ◽  
Meenakshisundaram Swaminathan

The fluorescence quenching of 2-aminodiphenylamine (2ADPA), 4-aminodiphenylamine (4ADPA) and 4,4'-diaminodiphenylamine (DADPA) with tetrachloromethane, chloroform and dichloromethane have been studied in hexane, dioxane, acetonitrile and methanol as solvents. The quenching rate constants for the process have also been obtained by measuring the lifetimes of the fluorophores. The quenching was found to be dynamic in all cases. For 2ADPA and 4ADPA, the quenching rate constants of CCl4 and CHCl3 depend on the viscosity, whereas in the case of CH2Cl2, kq depends on polarity. The quenching rate constants for DADPA with CCl4 are viscosity-dependent but the quenching with CHCl3 and CH2Cl2 depends on the polarity of the solvents. From the results, the quenching mechanism is explained by the formation of a non-emissive complex involving a charge-transfer interaction between the electronically excited fluorophores and ground-state chloromethanes.


2003 ◽  
Vol 68 (1) ◽  
pp. 178-188 ◽  
Author(s):  
Libor Mrázek ◽  
Ján Žabka ◽  
Zdeněk Dolejšek ◽  
Zdeněk Herman

The beam scattering method was used to investigate non-dissociative single-electron charge transfer between the molecular dication CO22+ and Ar or Ne at several collision energies between 3-10 eV (centre-of-mass, c.m.). Relative translational energy distributions of the product ions showed that in the reaction with Ar the CO2+ product was mainly formed in reactions of the ground state of the dication, CO22+(X3Σg-), leading to the excited states of the product CO2+(A2Πu) and CO2+(B2Σu+). In the reaction with Ne, the largest probability had the process from the reactant dication excited state CO22+(1Σg+) leading to the product ion ground state CO2+(X2Πg). Less probable were processes between the other excited states of the dication CO22+, (1∆g), (1Σu-), (3∆u), also leading to the product ion ground state CO2+(X2Πg). Using the Landau-Zener model of the reaction window, relative populations of the ground and excited states of the dication CO22+ in the reactant beam were roughly estimated as (X3Σg):(1∆g):(1Σg+):(1Σu-):(3∆u) = 1.0:0.6:0.5:0.25:0.25.


2021 ◽  
Author(s):  
Tobias Ullrich ◽  
Dominik Munz ◽  
Dirk M. Guldi

Singlet fission (SF) is a photophysical downconversion pathway, in which a singlet excitation transforms into two triplet excited states.


1985 ◽  
Vol 40 (9) ◽  
pp. 913-919
Author(s):  
Juan Carlos López ◽  
José L. Alonso

Abstract The rotational transitions of 3,4-dihydro-1,2-pyran in the ground state and six vibrationally excited states have been assigned. The rotational constants for the ground state (A = 5198.1847(24), B = 4747.8716(24) and C = 2710.9161(24) have been derived by fitting μa, μb and μc-type transitions. The dipole moment was determined from Stark displacement measurements to be 1.400(8) D with its principal axis components |μa| =1.240(2), |μb| = 0.588(10) and |μc| = 0.278(8) D. A model calculation to reproduce the ground state rotational constants indicates that the data are consistent with a twisted ring conformation. The average intensity ratio gives vibrational separations between the ground and excited states of the ring-bending and ring-twisting modes of ~ 178 and ~ 277 cm-1 respectively.


Sign in / Sign up

Export Citation Format

Share Document