Mechanical properties and variation in SOC going from La to Nd in intermetallic RIn3 and RSn3 (R = La, Ce, Pr, Nd)

RSC Advances ◽  
2015 ◽  
Vol 5 (49) ◽  
pp. 39416-39423 ◽  
Author(s):  
M. Shafiq ◽  
Iftikhar Ahmad ◽  
S. Jalali-Asadabadi

The cubic rare-earth intermetallics RIn3 and RSn3 (R = La, Ce, Pr, Nd) have been investigated using the full potential linearized augmented plane waves plus local orbital method in the density functional theory framework.

2006 ◽  
Vol 987 ◽  
Author(s):  
M. Zemzemi ◽  
M. Hebbache ◽  
D. Zivkovic ◽  
L Stuparevic

AbstractTransition metals of the platinum group (Os, Ir, Pt, Ru, Re, Rh) do not form carbides and nitrides at ambient pressure. Osmium carbide seems to have been synthesized at zero pressure by Kempter and Nadler forty six years ago. According to the authors, OsC crystallizes in WC-type structure and has a hardness equal to 2000 kg mm-2. Up to date, no other experimental confirmation is available. We studied the electronic and mechanical properties of this hypothetical carbide using an approach based on the density-functional theory. We found that the work of the above mentioned authors is sound. The calculated lattice parameters are in good agreement with that given by those authors and a rough estimate also showed that the hardness given by them is reasonable. However, we found that the hexagonal structure of osmium carbide is electronically and mechanically unstable.


2021 ◽  
Author(s):  
Mike J. Edwards

ABSTRACTBy means of the density functional theory framework (DFT) as well as the molecular dynamic simulations (MD), a polyelectrolyte chain (PE) in the good solvent conditions at thermal equilibrium is studied. The strength of the electrostatic interactions is varied by the Bjerrum length of the solvent. It turns out that average extension of a PE scales with the degree of polymerization, very much similar to a neutral polymer chain in good solvent. Remarkably, the difference between a PE and a neutral chain appears to be solely in the correlations among monomers which are stored in the Virial coefficients. Interestingly, upon increasing the Bjerrum length of solvent, the chain shrinks. This outcome is confirmed by the DFT framework as well as the MD simulations.SIGNIFICANCEThe significance of this study is that it strongly criticizes the idea (already mentioned in T. Kreer, Soft Matter, 12, 3479 (2016)) that the PEs behave similar to a neutral ideal chain. This study could be useful in our understanding of biopolymers.


2010 ◽  
Vol 9 ◽  
pp. 25-30 ◽  
Author(s):  
A. Blanca-Romero ◽  
A. Flores-Riveros ◽  
J.F. Rivas-Silva

One of the interests on the study of doped materials with rare earths in their bulk or nanoscale size is owing to the enhancement of the intensity of light in their photoluminescence when a lanthanide exists in a receptor material, as ZnO in our case. Until now, one of the most useful theories for calculations of electronic properties in molecular and solid state systems is the Density Functional Theory (DFT), which is not capable to manage well the presence of high localized electrons, as in lanthanide compounds in general and the doped case in particular. We propose to study these materials with super cell model using some correction to the standard calculations. For this goal, we employ the WIEN2k [1] code using the LDA+U approximation to take into account the strong correlation of the f electrons coming from the lanthanide. We emphasise the study of deformation due to the presence of Eu ion in the structure of host material, optimizing the position of neighboring Oxygen atoms. This deformation has been related to Kondo Resonance [2] appearing around the Fermi Energy of the compound, due to hybridization [3] among the f electrons from rare earth and neighboring oxygen levels.


2021 ◽  
Author(s):  
Mike John Edwards

The density functional theory framework and the scaling theory are employed to approach the problem of the Polyelectrolyte brush bilayer under shear. It turns out that, the system at shear rates larger than a critical shear rate undergo a global restructuring during which chains stretch in the shear direction. In the absence of the electrostatic interactions as well as the hydrodynamic interactions, this global restructuring causes a sublinear scaling of the shear stress with the shear rate which makes the shear thinning effect. Nevertheless, in the presence of the hydrodynamic interactions, not only there is no sublinear regime but also a weak superlinear regime which makes a weak shear thickening effect. In the presence of the electrostatic interactions, the stress tensor components change by their second Virial coefficients, however, their shear rate power law are untouched. Nonetheless, the kinetic friction coefficient is independent of the electrostatic interactions. This suggests that the lubrication is not very much different than the neutral bilayers and the electrostatic interactions do not change that. The results of this study offers that maybe nature uses another mechanism to reduce friction coefficient in synovial joint and other biological systems.


2018 ◽  
Author(s):  
Mike Edwards

By means of the density functional theory framework I tackle the long-standing problem of a polymer star interpenetrating with a polymer brush at thermal equilibrium. Remarkably, the star is repelled to the outside of the brush once it sucks into the brush. It turns out that there could be a highly fluctuating region at the brush edge. The highly fluctuating region would be responsible for discontinuous absorption transitions by brushes. However, up to an small interpenetration length, below which asphericity of the star is maintained, the star gets collapsed by sucking more and more into the brush.


2019 ◽  
Vol 21 (5) ◽  
pp. 2673-2690 ◽  
Author(s):  
Francisco Colmenero

The mechanical properties of oxalic acid dihydrate and anhydrous oxalic acid (α and β polymorphic forms) were obtained by using rigorous theoretical solid-state methods based on density functional theory using plane waves and pseudopotentials.


2021 ◽  
Vol 2 (11) ◽  
pp. 1067-1073
Author(s):  
Roya Momen ◽  
Alejandro Morales-Bayuelo

The Three-Dimensional Quantitative Structure-Activity Relationship (3D QSAR) models now have a wide range of applications; however, new methodologies are required due to the complexity in understanding their results. This research presents a generalized version of quantum similarity field and chemical reactivity descriptors within the density functional theory framework. By taking reference compounds, this generalized methodology can be used to understand the biological activity of a molecular set. In this sense, this methodology allows to study of the CoMFA in quantum similarity and chemical reactivity. It is feasible to investigate steric and electrostatic effects on local substitutions using this method. They were considering that how these methodologies could be used when the receptor is known or unknown.


Sign in / Sign up

Export Citation Format

Share Document