scholarly journals CYP199A4 catalyses the efficient demethylation and demethenylation of para-substituted benzoic acid derivatives

RSC Advances ◽  
2015 ◽  
Vol 5 (64) ◽  
pp. 52007-52018 ◽  
Author(s):  
Tom Coleman ◽  
Rebecca R. Chao ◽  
John B. Bruning ◽  
James J. De Voss ◽  
Stephen G. Bell

CYP199A4, a cytochrome P450 enzyme from Rhodopseudomonas palustris HaA2, is able to efficiently demethylate a range of benzoic acids at the para-position. It can also catalyse demethenylation reactions.

Author(s):  
Maxim Kuzin ◽  
Franziskos Xepapadakos ◽  
Isabel Scharrer ◽  
Marc Augsburger ◽  
Chin‐Bin Eap ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Miao Guo ◽  
Xiangtao Kong ◽  
Chunzhi Li ◽  
Qihua Yang

AbstractHydrogenation of benzoic acid (BA) to cyclohexanecarboxylic acid (CCA) has important industrial and academic significance, however, the electron deficient aromatic ring and catalyst poisoning by carboxyl groups make BA hydrogenation a challenging transformation. Herein, we report that Pt/TiO2 is very effective for BA hydrogenation with, to our knowledge, a record TOF of 4490 h−1 at 80 °C and 50 bar H2, one order higher than previously reported results. Pt/TiO2 catalysts with electron-deficient and electron-enriched Pt sites are obtained by modifying the electron transfer direction between Pt and TiO2. Electron-deficient Pt sites interact with BA more strongly than electron-rich Pt sites, helping the dissociated H of the carboxyl group to participate in BA hydrogenation, thus enhancing its activity. The wide substrate scope, including bi- and tri-benzoic acids, further demonstrates the high efficiency of Pt/TiO2 for hydrogenation of BA derivatives.


2003 ◽  
Vol 77 (10) ◽  
pp. 555-560 ◽  
Author(s):  
Miroslav Machala ◽  
Pavel Soucek ◽  
Jir� Neca ◽  
Robert Ulrich ◽  
Jir� Lamka ◽  
...  

2018 ◽  
Vol 28 (1) ◽  
pp. 56-62
Author(s):  
Cahit Kural ◽  
Arzu Kaya Kocdogan ◽  
Gulcin Güler Şimşek ◽  
Serpil Oğuztüzün ◽  
Pınar Kaygın ◽  
...  

Objective: Intracranial tumors are one of the most frightening and difficult-to-treat tumor types. In addition to surgery, protocols such as chemotherapy and radiotherapy also take place in the treatment. Glutathione S-transferase (GST) and cytochrome P450 (CYP) enzymes are prominent drug-metabolizing enzymes in the human body. The aim of this study is to show the expression of GSTP1, GSTM1, CYP1A1, and CYP1B1 in different types of brain tumors and compare our results with those in the literature. Subjects and Methods: The expression of GSTP1, GSTM1, CYP1A1, and CYP1B1 was analyzed using immunostaining in 55 patients with intracranial tumors in 2016–2017. For GST and CYP expression in normal brain tissue, samples of a portion of surrounding normal brain tissue as well as a matched far neighbor of tumor tissue were used. The demographic features of the patients were documented and the expression results compared. Results: The mean age of the patients was 46.72 years; 29 patients were female and 26 were male. Fifty-seven specimens were obtained from 55 patients. Among them, meningioma was diagnosed in 12, metastases in 12, glioblastoma in 9, and pituitary adenoma in 5. The highest GSTP1, GSTM1, and CYP­1A1 expressions were observed in pituitary adenomas. The lowest GSTP1 expression was detected in glioblastomas and the lowest CYP1B1 expression in pituitary adenomas. Conclusion: GSTP1 and CYP expression is increased in intracranial tumors. These results should be confirmed with a larger series and different enzyme subtypes.


1997 ◽  
Vol 31 (3) ◽  
pp. 349-356 ◽  
Author(s):  
Vish S Watkins ◽  
Ron E Polk ◽  
Jennifer L Stotka

Objective To describe the drug interactions of dirithromycin, a new macrolide, and to compare them with those of other macrolides. Data Sources A literature search was performed using MEDLINE to identify articles published between January 1980 and July 1995 concerning the drug interactions of macrolides. Published abstracts were also examined. All studies using dirithromycin were performed under the sponsorship of Eli Lilly and Company. Data Synthesis Erythromycin, the first macrolide discovered, is metabolized by the cytochrome P450 enzyme system. By decreasing their metabolism, erythromycin can interact with other drugs metabolized by the cytochrome P450 enzymes. The lack of such interactions would be a desirable feature in a newer macrolide. We describe studies performed to detect any interactions of dirithromycin with cyclosporine, theophylline, terfenadine, warfarin, and ethinyl estradiol. The studies showed that dirithromycin, like azithromycin, is much less likely to cause the interactions detected with clarithromycin and erythromycin. A review of the literature showed differences among macrolides in their abilities to inhibit cytochrome P450 enzymes and, thus, to cause drug–drug interactions. Erythromycin and clarithromycin inhibit cytochrome P450 enzymes, and have been implicated in clinically significant interactions. Azithromycin and dirithromycin neither inhibit cytochrome P450 enzymes nor are implicated in clinically significant drug–drug interactions. Conclusions Dirithromycin, a new macrolide, does not inhibit the cytochrome P450 enzyme system. The concomitant use of dirithromycin with cyclosporine, theophylline, terfenadine, warfarin, or ethinyl estradiol was studied in pharmacokinetic and pharmacodynamic studies. In vitro, dirithromycin did not bind cytochrome P450. In healthy subjects, erythromycin increases the clearance of cyclosporine by 51%, whereas dirithromycin causes no significant changes in the pharmacokinetics of cyclosporine. In kidney transplant recipients, administration of dirithromycin was associated with a significant (p < 0.003) decrease of 17.4% in the clearance of cyclosporine. In patients taking low-dose estradiol, the administration of dirithromycin caused a significant (p < 0.03) increase of 9.9% in the clearance of ethinyl estradiol; escape ovulation did not occur. Unlike erythromycin and clarithromycin, dirithromycin had no significant effects on the pharmacokinetics of theophylline, terfenadine, or warfarin. The alterations typical of drug interactions that are based on inhibition of the cytochrome P450 system occurring with erythromycin and clarithromycin were not observed with dirithromycin.


2005 ◽  
Vol 155 (1-2) ◽  
pp. 62-70 ◽  
Author(s):  
A. Matthias ◽  
E.M.J. Gillam ◽  
K.G. Penman ◽  
N.J. Matovic ◽  
K.M. Bone ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document