Pd nanoparticles supported on reduced graphene–E. coli hybrid with enhanced crystallinity in bacterial biomass

RSC Advances ◽  
2015 ◽  
Vol 5 (102) ◽  
pp. 84093-84103 ◽  
Author(s):  
Rachel E. Priestley ◽  
Alexander Mansfield ◽  
Joshua Bye ◽  
Kevin Deplanche ◽  
Ana B. Jorge ◽  
...  

Schematic showing the possible electronic interactions betweenE. coli, Pd(ii) and GO during the simultaneous reduction process leading to enhanced crystallinity in bacterial biomass.

Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2519
Author(s):  
Alexander N. Ionov ◽  
Mikhail P. Volkov ◽  
Marianna N. Nikolaeva ◽  
Ruslan Y. Smyslov ◽  
Alexander N. Bugrov

This work presents our study results of the magnetization of multilayer UV-reduced graphene oxide (UV-rGO), polymer matrix (polystyrene), and a conjugated composite based on them. The mesoscopic structure of the composites synthesized in this work was studied by such methods as X-ray diffraction, SEM, as well as NMR-, IR- and Raman spectroscopy. The magnetization of the composites under investigation and their components was measured using a vibrating-sample magnetometer. It has been shown that the UV-reduction process leads to the formation of many submicron holes distributed inside rGO flakes, which can create edge defects, causing possibly magnetic order in the graphite samples under investigation on the mesoscopic level. This article provides an alternative explanation for the ferromagnetic hysteresis loop in UV-rGO on the base of superconductivity type-II.


Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 256
Author(s):  
Irina V. Pushkareva ◽  
Artem S. Pushkarev ◽  
Valery N. Kalinichenko ◽  
Ratibor G. Chumakov ◽  
Maksim A. Soloviev ◽  
...  

Platinum (Pt)-based electrocatalysts supported by reduced graphene oxide (RGO) were synthesized using two different methods, namely: (i) a conventional two-step polyol process using RGO as the substrate, and (ii) a modified polyol process implicating the simultaneous reduction of a Pt nanoparticle precursor and graphene oxide (GO). The structure, morphology, and electrochemical performances of the obtained Pt/RGO catalysts were studied and compared with a reference Pt/carbon black Vulcan XC-72 (C) sample. It was shown that the Pt/RGO obtained by the optimized simultaneous reduction process had higher Pt utilization and electrochemically active surface area (EASA) values, and a better performance stability. The use of this catalyst at the cathode of a proton exchange membrane fuel cell (PEMFC) led to an increase in its maximum power density of up to 17%, and significantly enhanced its performance especially at high current densities. It is possible to conclude that the optimized synthesis procedure allows for a more uniform distribution of the Pt nanoparticles and ensures better binding of the particles to the surface of the support. The advantages of Pt/RGO synthesized in this way over conventional Pt/C are the high electrical conductivity and specific surface area provided by RGO, as well as a reduction in the percolation limit of the components of the electrocatalytic layer due to the high aspect ratio of RGO.


RSC Advances ◽  
2016 ◽  
Vol 6 (101) ◽  
pp. 98708-98716 ◽  
Author(s):  
Zhelin Liu ◽  
Yinghui Feng ◽  
Xiaofeng Wu ◽  
Keke Huang ◽  
Shouhua Feng ◽  
...  

Pd nanoparticles with multi-edges and corners are prepared and assembled on reduced graphene oxide to examine the electrocatalytic activity. Point discharge is regarded to be capable of facilitating the electron transfer.


2021 ◽  
Vol 1028 ◽  
pp. 279-284
Author(s):  
Nur Khanifah ◽  
Diyan Unmu Dzujah ◽  
Vika Marcelina ◽  
Rahmat Hidayat ◽  
Fitrilawati ◽  
...  

Reduced graphene oxide (RGO) is promising candidate to be used as an active material of super capacitor electrodes. Graphene oxide (GO) is mostly used as a precursor, therefore it is needed to remove its oxygen containing functional groups. Generally, the RGO films are obtained from Graphene Oxide (GO) films which are then treated using thermal reduction or photo reduction process. We developed a spraying coating method that called as UV oven spraying by combining spraying coating method and photo reduction process. By this deposition method, we can obtain RGO films directly from the GO precursor since deposition and photo reduction steps are taken place at the same time. Level of oxygen removal of the obtained RGO film depends on irradiation intensity and length of irradiation. In this work, we report the effect of varied length of irradiation time on the RGO optical characteristics. We prepared multilayer of RGO films using UV oven spraying technique on quartz substrates from 0.5 mg/ml commercial GO dispersion (Graphenea) with varied the UV irradiation time. We used 125-Watt mercury lamp that was set at distance of 30 cm from substrates. We examined the effect of varied of length of irradiation time on its optical characteristics using UV-Vis Spectroscopy. Level of reduction by provided irradiation time was examined using SEM/EDS measurement.


2017 ◽  
Vol 5 (40) ◽  
pp. 21249-21256 ◽  
Author(s):  
Muhammad Iqbal ◽  
Cuiling Li ◽  
Bo Jiang ◽  
Md. Shahriar A. Hossain ◽  
Md. Tofazzal Islam ◽  
...  

Uniformly sized mesoporous palladium (Pd) nanoparticles supported on reduced graphene oxide (rGO) surfaces can be prepared by solution phase synthesis.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
N. V. Pozdniakova ◽  
N. V. Gorokhovets ◽  
N. V. Gukasova ◽  
A. V. Bereznikova ◽  
E. S. Severin

A new chimeric geneApE1encoding the receptor-binding domain of the humanalpha-fetoprotein fused to a sequence of 22 glutamic acid residues was constructed. A new bacterial producer strainE. coliSHExT7 ApE1 was selected for ApE1 production in a soluble state. A simplified method was developed to purify ApE1 from bacterial biomass. It was shown that the new vector protein selectively interacts with AFP receptors on the tumor cell surface and can be efficiently accumulated in tumor cells. In addition, ApE1 was shown to be stable in storage and during its chemical modification. An increased number of carboxyl groups in the molecule allows the production of cytotoxic compound conjugates with higher drug-loading capacity and enhanced tumor targeting potential.


Nanoscale ◽  
2018 ◽  
Vol 10 (26) ◽  
pp. 12487-12496 ◽  
Author(s):  
Haichao Duan ◽  
Yu Yang ◽  
Jianhua Lü ◽  
Changli Lü

We report a facile, mussel-inspired construction of a thermo-responsive diblock copolymer-anchored rGO support for superfine PdNPs with high catalytic activity.


1996 ◽  
Vol 34 (10) ◽  
pp. 89-95 ◽  
Author(s):  
Hu Tai-Lee

The use of biomass for the removal of reactive dyes from an aqueous solution with different bacterial genera has been investigated. Three Gram-negative bacteria: Aeromonas sp., P. luteola and E. coli, and two Gram-positive bacteria: B. subtilis and S. aureus and a mixed biomass of activated sludge are the tested biosorbents. Dead cells of Gram-negative bacteria have a higher specific adsorption capacity than the living cells. The dye removal is in the order of Aeromonoas sp. > P. luteola > E. coli. The adsorption equilibrium can be reached within one hour. Due to the positively charged cells at acidic pH, the removal of reactive dyes increases with decreasing pH. Evaluating the adsorption parameters, bacterial biomass exhibits stable adsorption characteristics, which makes it a suitable adsorbent for different dye compounds.


Sign in / Sign up

Export Citation Format

Share Document