Novel Al2O3–SiO2composite aerogels with high specific surface area at elevated temperatures with different alumina/silica molar ratios prepared by a non-alkoxide sol–gel method

RSC Advances ◽  
2016 ◽  
Vol 6 (7) ◽  
pp. 5611-5620 ◽  
Author(s):  
Xiaodong Wu ◽  
Gaofeng Shao ◽  
Xiaodong Shen ◽  
Sheng Cui ◽  
Ling Wang

We have developed a new sol–gel route to synthesise Al2O3–SiO2composite aerogels with different alumina/silica (Al/Si) molar ratios using an inexpensive inorganic salt.

2020 ◽  
Vol 49 (21) ◽  
pp. 7144-7154 ◽  
Author(s):  
Alexander Ott ◽  
Simone Rogg ◽  
Stefan Lauterbach ◽  
Hans-Joachim Kleebe ◽  
Christian Hess ◽  
...  

Novel mesoporous, high specific surface area (up to 562 m2 g−1) 0D-nanocarbon-based silicon-containing ceramic composites were produced by a straightforward sol–gel method followed by polymer-to-ceramic transformation.


2011 ◽  
Vol 10 (2) ◽  
pp. 25
Author(s):  
Anirut Leksomboon ◽  
Bunjerd Jongsomjit

In this present study, the spherical silica support was synthesized from tetraethyloxysilane (TEOS), water, sodium hydroxide, ethylene glycol and n-dodecyltrimethyl ammonium bromide (C12TMABr). The particle size was controlled by variation of the ethylene glycol co-solvent weight ratio of a sol-gel method preparation in the range of 0.10 to 0.50. In addition, the particle size apparently increases with high weight ratio of co-solvent, but the particle size distribution was broader. The standard deviation of particle diameter is large when the co-solvent weight ratio is more than 0.35 and less than 0.15. However, the specific surface area was similar for all weight ratios ranging from 1000 to 1300 m2/g. The synthesized silica was spherical and has high specific surface area. The cobalt was impregnated onto the obtained silica to produce the cobalt catalyst used for CO2 hydrogenation.</


2013 ◽  
Vol 423-426 ◽  
pp. 523-527
Author(s):  
Xuan Liu ◽  
Zhen Fa Liu ◽  
Hao Lin Fu ◽  
Rui He ◽  
Li Hui Zhang

Phloroglucinol-resorcinol-formaldehyde organic aerogels (PRF) were prepared using phloroglucinol, resorcinol and formaldehyde in a sol-gel process, solvent replacement and drying at room temperature. The phloroglucinol-resorcinol-formaldehyde carbon aerogels (CPRF) were prepared by charring the PRF at high temperature under the aegis of helium flow. The microstructure of CPRF was characterized by infrared spectroscopy, specific surface area analyzer and scanning electron microscopy. The results showed that the CPRF had continuous network structure and high specific surface area.


2012 ◽  
Vol 519 ◽  
pp. 83-86 ◽  
Author(s):  
Guang Wu Liu ◽  
Xing Yuan Ni ◽  
Bin Zhou ◽  
Qiu Jie Yu

This paper deals with the synthesis of ultralow density silica aerogels using tetramethyl orthosilicate (TMOS) as the precursor via sol-gel process followed by supercritical drying using acetonitrile solvent extraction. Ultralow density silica aerogels with 6 mg/cc of density was made for the molar ratio by this method. The microstructure and morphology of the ultralow density silica aerogels was characterized by the specific surface area, SBET, SEM, and the pore size distribution techniques. The results show that the ultralow density silica aerogel has the high specific surface area of 812m2/g. Thermal conductivities at desired temperatures were analyzed by the transient plane heat source method. Thermal conductivity coefficients of silica aerogel monoliths changed from 0.024 to 0.043W/ (m K) as temperature increased to 400°C, revealed an excellent heat insulation effect during thermal process.


2007 ◽  
Vol 336-338 ◽  
pp. 2286-2289
Author(s):  
Fei He ◽  
Xiao Dong He ◽  
Yao Li

Low-density xSiO2-(1-x)Al2O3 xerogels with x=0.9, 0.8, 0.7, 0.6 (mole fractions) were prepared by sol-gel and non-supercritical drying. Silica alkogels, which were the framework of binary composite materials, formed from tetraethyl orthosilicate (TEOS) by hydrolytic condensation with a molar ratio of TEOS: H2O: alcohol: hydrochloric acid: ammonia =1: 4: 10: 7.5×10-4: 0.0375. Aluminum hydroxide derived from Al(NO3)3·9H2O and NH4OH acting in the alcohol solution under the condition of catalyst. After filtrating and washing, the precipitation was mixed into silica sols to form SiO2-Al2O3 mixed oxide gels with different silicon and aluminum molar ratio. The structural change and crystallization of the binary xerogels were investigated after heat treatment at 600 for 2 h by the means of X-ray diffraction. Nitrogen adsorption experiment was performed to estimate specific surface area, porous volume and pore size distribution. The structural change of xerogels was observed by FT-IR spectroscopy. The resulting mixed xerogels possess of mesoporous structure which is characteristic of cylindrical pores, high specific surface area of 596-863 m2/g and a relatively narrow pore distribution of 2.8-30 nm. Al2O3 is introduced into the SiO2 phase and some of Al-O-Si bonds form.


2018 ◽  
Vol 53 (18) ◽  
pp. 12885-12893 ◽  
Author(s):  
Zhifang Fei ◽  
Zichun Yang ◽  
Guobing Chen ◽  
Kunfeng Li ◽  
Shuang Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document