Bioengineered mussel glue incorporated with a cell recognition motif as an osteostimulating bone adhesive for titanium implants

2015 ◽  
Vol 3 (41) ◽  
pp. 8102-8114 ◽  
Author(s):  
Yun Kee Jo ◽  
Bong-Hyuk Choi ◽  
Cong Zhou ◽  
Jin-Soo Ahn ◽  
Sang Ho Jun ◽  
...  

An engineered mussel glue MAP-RGD can be successfully used as a novel functional osteostimulating bone adhesive for titanium implants through improved osteoblastic cell behaviors, blood responses, and eventually enhanced bone regeneration.

2020 ◽  
Author(s):  
O. Cochet-Escartin ◽  
M. Demircigil ◽  
S. Hirose ◽  
B. Allais ◽  
P. Gonzalo ◽  
...  

AbstractIt is well known that eukaryotic cells can sense oxygen (O2) and adapt their metabolism accordingly. It is less known that they can also move towards regions of higher oxygen level (aerotaxis). Using a self-generated hypoxic assay, we show that the social amoeba Dictyostelium discoideum displays a spectacular aerotactic behavior. When a cell colony is covered by a coverglass, cells quickly consume the available O2 and the ones close to the periphery move directionally outward forming a dense ring keeping a constant speed and density. To confirm that O2 is the main molecular player in this seemingly collective process, we combined two technological developments, porphyrin based O2 sensing films and microfluidic O2 gradient generators. We showed that Dictyostelium cells exhibit aerotactic and aerokinetic (increased speed at low O2) response in an extremely low range of O2 concentration (0-1.5%) indicative of a very efficient detection mechanism. The various cell behaviors under self-generated or imposed O2 gradients were modeled with a very satisfactory quantitative agreement using an in silico cellular Potts model built on experimental observations. This computational model was complemented with a parsimonious ‘Go or Grow’ partial differential equation (PDE) model. In both models, we found that the collective migration of a dense ring can be explained by the interplay between cell division and the modulation of aerotaxis, without the need for cell-cell communication.


2009 ◽  
Vol 89 (1) ◽  
pp. 77-81 ◽  
Author(s):  
W.-W. Hu ◽  
B.B. Ward ◽  
Z. Wang ◽  
P.H. Krebsbach

Because bone reconstruction in irradiated sites is less than ideal, we applied a regenerative gene therapy method in which a cell-signaling virus was localized to biomaterial scaffolds to regenerate wounds compromised by radiation therapy. Critical-sized defects were created in rat calvariae previously treated with radiation. Gelatin scaffolds containing lyophilized adenovirus encoding BMP-2 (AdBMP-2) or freely suspended AdBMP-2 were transplanted. Lyophilized AdBMP-2 significantly improved bone quality and quantity over free AdBMP-2. Bone mineral density was reduced after radiotherapy. Histological analyses demonstrated that radiation damage led to less bone regeneration. The woven bone and immature marrow formed in the radiated defects indicated that irradiation retarded normal bone development. Finally, we stored the scaffolds with lyophilized AdBMP-2 at −80°C to determine adenovirus stability. Micro-CT quantification demonstrated no significant differences between bone regeneration treated with lyophilized AdBMP-2 before and after storage, suggesting that virus-loaded scaffolds may be convenient for application as pre-made constructs.


2013 ◽  
Vol 1 (21) ◽  
pp. 2731 ◽  
Author(s):  
Jae Ho Lee ◽  
Jeong-Hui Park ◽  
Ye-Rang Yun ◽  
Jun-Hyeog Jang ◽  
Eun-Jung Lee ◽  
...  

2007 ◽  
Vol 34 (1) ◽  
pp. 78-86 ◽  
Author(s):  
Frank Schwarz ◽  
Monika Herten ◽  
Martin Sager ◽  
Marco Wieland ◽  
Michel Dard ◽  
...  

2010 ◽  
Vol 638-642 ◽  
pp. 670-674
Author(s):  
Akiko Obata ◽  
Takashi Wakita ◽  
Yoshio Ota ◽  
Toshihiro Kasuga

Microfiber meshes releasing a trace amount of silicon species were prepared by electrospinning silicon-doped vaterite (SiV) and poly(lactic acid) (PLA) hybrids for application to membranes for guided bone regeneration (GBR). A trace amount of silicon-species has been reported to enhance the mineralization and bone-forming abilities of osteogenic cells. The microfiber meshes prepared by electrospinning are regarded to be a useful candidate for the GBR membrane, because they have adequate flexibility and porosity for it. In this study, hydroxyapatite (HA)-forming abilities in simulated body fluid, silicon-releasabilities, compatibility with osteoblast-like cells of the prepared microfiber meshes were examined. The meshes were completely coated with HA after soaking in simulated body fluid for 1 day. The meshes coated with HA released 0.2 -0.7 mg/L of silicon species in a cell culture medium for 7 days. The cells elongated on the microfibers of the meshes and some of them entered the mesh after 1 day-culturing. The meshes are expected to provide an excellent substrate for bone regeneration and enhance bone-forming ability of the cells.


Sign in / Sign up

Export Citation Format

Share Document