Efficient gene transfection to liver cells via the cellular regulation of a multifunctional polylactitol-based gene transporter

2016 ◽  
Vol 4 (12) ◽  
pp. 2208-2218 ◽  
Author(s):  
Young-Dong Kim ◽  
Tae-Eun Park ◽  
Bijay Singh ◽  
Kye-Soo Cho ◽  
Jaiprakash N. Sangshetti ◽  
...  

A new polylactitol-based multifunctional gene carrier has shown low cytotoxicity, a high transfection efficiency, and liver cell targeting bothin vitroandin vivo.

Molecules ◽  
2018 ◽  
Vol 23 (8) ◽  
pp. 2061 ◽  
Author(s):  
Guo-Qing Lin ◽  
Wen-Jing Yi ◽  
Qiang Liu ◽  
Xue-Jun Yang ◽  
Zhi-Gang Zhao

In this report, a series of polycations are designed and synthesized by conjugating reactive oxygen species (ROS)-responsive thioacetal-linkers to low molecular weight (LMW) polyethylenimine (PEI) via ring-opening polymerization. Their structure–activity relationships (SARs) as gene delivery vectors are systematically studied. Although the MWs of the target polymers are only ~9 KDa, they show good DNA binding ability. The formed polyplexes, which are stable toward serum but decomposed under ROS-conditions, have appropriate sizes (180~300 nm) and positive zeta-potentials (+35~50 mV). In vitro experiments reveal that these materials have low cytotoxicity, and higher transfection efficiency (TE) than controls. Furthermore, the title polymers exhibit excellent serum tolerance. With the present of 10% serum, the TE of the polymers even increases up to 10 times higher than 25 KDa PEI and 9 times higher than Lipofectamine 2000. The SAR studies also reveal that electron-withdrawing groups on the aromatic ring in 4a may benefit to balance between the DNA condensation and release for efficient gene transfection.


2021 ◽  
Author(s):  
Zikun Yu ◽  
Zhimin Zhang ◽  
Jing Yan ◽  
Ziyin Zhao ◽  
Chenglong Ge ◽  
...  

Guanidine-rich helical polypeptides bearing hydrophobic amino acid pendants displayed high transfection efficiency both in vitro and in vivo and low cytotoxicity toward applications in gene therapy.


2018 ◽  
Vol 9 (1) ◽  
pp. 4-11 ◽  
Author(s):  
Aparna Bansal ◽  
Himanshu

Introduction: Gene therapy has emerged out as a promising therapeutic pave for the treatment of genetic and acquired diseases. Gene transfection into target cells using naked DNA is a simple and safe approach which has been further improved by combining vectors or gene carriers. Both viral and non-viral approaches have achieved a milestone to establish this technique, but non-viral approaches have attained a significant attention because of their favourable properties like less immunotoxicity and biosafety, easy to produce with versatile surface modifications, etc. Literature is rich in evidences which revealed that undoubtedly, non–viral vectors have acquired a unique place in gene therapy but still there are number of challenges which are to be overcome to increase their effectiveness and prove them ideal gene vectors. Conclusion: To date, tissue specific expression, long lasting gene expression system, enhanced gene transfection efficiency has been achieved with improvement in delivery methods using non-viral vectors. This review mainly summarizes the various physical and chemical methods for gene transfer in vitro and in vivo.


2015 ◽  
Vol 6 (5) ◽  
pp. 780-796 ◽  
Author(s):  
Cheng Wang ◽  
Xiuli Bao ◽  
Xuefang Ding ◽  
Yang Ding ◽  
Sarra Abbad ◽  
...  

A novel coating polymer LPHF is developed for the first time to elevate the transfection efficiency of DP binary polyplexes in vitro and in vivo.


2015 ◽  
Vol 3 (4) ◽  
pp. 688-699 ◽  
Author(s):  
Yan Liu ◽  
Chao Lin ◽  
Jianbo Li ◽  
Yang Qu ◽  
Jie Ren

Dendritic PCL-b-PDMAEMA copolymers have been used as non-viral vectors for gene transfection and exhibited high transfection efficiencies and low cytotoxicity.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Yinan Zhao ◽  
Tianyi Zhao ◽  
Yanyan Du ◽  
Yingnan Cao ◽  
Yang Xuan ◽  
...  

Abstract Background During the course of gene transfection, the interaction kinetics between liposomes and DNA is speculated to play very important role for blood stability, cellular uptake, DNA release and finally transfection efficiency. Results As cationic peptide liposomes exhibited great gene transfer activities both in vitro and in vivo, two peptide lipids, containing a tri-ornithine head (LOrn3) and a mono-ornithine head (LOrn1), were chosen to further clarify the process of liposome-mediated gene delivery in this study. The results show that the electrostatically-driven binding between DNA and liposomes reached nearly 100% at equilibrium, and high affinity of LOrn3 to DNA led to fast binding rate between them. The binding process between LOrn3 and DNA conformed to the kinetics equation: y = 1.663631 × exp (− 0.003427x) + 6.278163. Compared to liposome LOrn1, the liposome LOrn3/DNA lipoplex exhibited a faster and more uniform uptake in HeLa cells, as LOrn3 with a tri-ornithine peptide headgroup had a stronger interaction with the negatively charged cell membrane than LOrn1. The efficient endosomal escape of DNA from LOrn3 lipoplex was facilitated by the acidity in late endosomes, resulting in broken carbamate bonds, as well as the “proton sponge effect” of the lipid. Conclusions The interaction kinetics is a key factor for DNA transfection efficiency. This work provided insights into peptide lipid-mediated DNA delivery that could guide the development of the next generation of delivery systems for gene therapeutics.


2018 ◽  
Vol 6 (21) ◽  
pp. 3466-3474 ◽  
Author(s):  
Wenpan Li ◽  
Dan Liu ◽  
Qiqi Wang ◽  
Haiyang Hu ◽  
Dawei Chen

Calcium phosphate (CaP) nanoparticles have been considered as a non-viral gene delivery vehicle, but the weakness of inconsistent and low transfection efficiencies is limited to its progress.


2013 ◽  
Vol 31 (5) ◽  
pp. 713-718 ◽  
Author(s):  
Wei Qu ◽  
Si Chen ◽  
Shan Ren ◽  
Xue-jun Jiang ◽  
Ren-xi Zhuo ◽  
...  

MRS Bulletin ◽  
2005 ◽  
Vol 30 (9) ◽  
pp. 647-653 ◽  
Author(s):  
Philippe Barthélémy ◽  
Michel Camplo

AbstractThe design of safe and efficient gene transfer vectors remains one of the key challenges in gene therapy. Despite their remarkable transfection efficiency, viral vectors suffer from known safety issues. Consequently, significant research activity has been undertaken to develop nonviral approaches to gene transfer during the last decade. Numerous academic and industrial research groups are investigating synthetic cationic vectors, such as cationic amphiphiles, with the objective of increasing the gene transfection activity. Within this area, the development of functional synthetic vectors that respond to local environmental effects have met with success. These synthetic vectors are based on mechanistic principles and represent a significant departure from earlier systems. Many of these systems for gene delivery in vitro and in vivo are discussed in this article.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii216-ii216
Author(s):  
Javier Fierro ◽  
An Tran ◽  
Chris Factoriza ◽  
Brandon Chin ◽  
Huanyu Dou

Abstract Glioblastoma multiforme (GBM) is a devastating cancer that develops from astrocytes in the brain. GBM is fast acting and kills 90% of patients within 5 years. Several immunotherapies have been developed to treat GBM, however, major challenges still persist. For example, checkpoint proteins such as programmed cell death protein 1 (PD-1) and its ligand, programmed death ligand 1 (PD-L1), are upregulated in GBM cells to evade the immune system. Targeting PD-L1 for genetic knockdown is thus a promising avenue for the treatment of GBM. However, PD-L1 protein inhibitors have been shown to cause immune overreaction and toxicity, therefore requiring new technologies. CRISPR/Cas9 gene editing has been widely used for the study and treatment of many diseases, but has not been extensively studied for the treatment of GBM. The main challenge is developing a gene delivery platform for the delivery of CRISPR/Cas9 plasmid DNA (pDNA). Many viral vectors have been used for the delivery of pDNA, but unfortunately are associated with high toxicity. Nanotechnology is emerging as a new platform for the delivery of pDNA as it shows high transfection efficiency with low cytotoxicity. We developed a cationic core-shell nanoparticle (NP) capable of carrying CRISPR/Cas9 pDNA. This plasmid contains multiple guide RNA (gRNA) expression cassettes for the knockdown of PD-L1. PDL1gRNA-CRISPR/Cas9pDNA-NPs were taken up by U87 cells within 30 minutes, and entered into the nucleus at 2 hours. The effective delivery of PDL1gRNA-CRISPR/Cas9pDNA-NPs led to the expression of PD-L1 gRNA and Cas9 enzyme, and the knockdown of PD-L1. Regulation of immune balance was determined after PD-L1 knockdown in vitro and in vivo. Our study shows the potential of NP-based PDL1gRNA-CRISPR/Cas9 delivery as an anti-GBM immunotherapy for clinical applications.


Sign in / Sign up

Export Citation Format

Share Document