High performance electrochemical capacitors based on MnO2/activated-carbon-paper

2015 ◽  
Vol 3 (24) ◽  
pp. 6166-6171 ◽  
Author(s):  
Zhiyu Cheng ◽  
Guiping Tan ◽  
Yongfu Qiu ◽  
Bing Guo ◽  
Faliang Cheng ◽  
...  

The composite MnO2/activated-carbon-paper has been reported for the first time and it shows high specific capacitance and remarkable rate capability as an electrochemical capacitor.

RSC Advances ◽  
2014 ◽  
Vol 4 (109) ◽  
pp. 64187-64192 ◽  
Author(s):  
Yongfu Qiu ◽  
Pingru Xu ◽  
Bing Guo ◽  
Zhiyu Cheng ◽  
Hongbo Fan ◽  
...  

The composite MnO2/ACP is reported for the first time and it shows high specific capacitance and remarkable rate capability.


2014 ◽  
Vol 2 (30) ◽  
pp. 11706-11715 ◽  
Author(s):  
Zhi Jin ◽  
Xiaodong Yan ◽  
Yunhua Yu ◽  
Guangjie Zhao

The combination of the high micropore surface area and the controlled mesopore size and mesopore/micropore ratio is responsible for high specific capacitance and excellent rate capability.


RSC Advances ◽  
2017 ◽  
Vol 7 (73) ◽  
pp. 46329-46335 ◽  
Author(s):  
Guixiang Du ◽  
Qiuxiao Bian ◽  
Jingbo Zhang ◽  
Xinhui Yang

A facile and rapid pyrolysis method is developed for the synthesis of 3D hierarchical porous carbon, which exhibits a high specific capacitance, good rate capability and good cycling performance.


RSC Advances ◽  
2017 ◽  
Vol 7 (76) ◽  
pp. 48341-48353 ◽  
Author(s):  
Xia Yang ◽  
Yuying Yang ◽  
Quancai Zhang ◽  
Xiaotong Wang ◽  
Yufeng An ◽  
...  

1-Hydroxyanthraquinone (HAQ) is selected to functionalize the dissected carbon nanotubes (rDCNTs) with reduced graphene oxide layers through non-covalent modification. The composite achieves high specific capacitance and ultrahigh rate capability.


2015 ◽  
Vol 08 (04) ◽  
pp. 1550031 ◽  
Author(s):  
Baolin Xing ◽  
Jianliang Cao ◽  
Yan Wang ◽  
Guiyun Yi ◽  
Chuanxiang Zhang ◽  
...  

A lignite-based activated carbon (LAC) for electrochemical capacitors (ECs) was prepared from high moisture lignite by KOH activation, and the as-prepared sample was characterized by the N 2-sorption, scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS) techniques. The electrochemical performances of ECs with activated carbon as electrodes in 3 M KOH aqueous solution were evaluated by constant current charge-discharge and cyclic voltammetry. The LAC exhibits a well-developed surface area of 2581 m2/g, a relative wide pore size distribution of 0.5–10 nm. The ECs with LAC as electrode materials presents a high specific capacitance of 392 F/g at a low current density of 50 mA/g, and still remains 315 F/g even at a high current density of 5 A/g. The residual specific capacitance is as high as 92.9% after 2000 cycles. Compared with the commercial activated carbon (Maxsorb: Commercial product, Kansai, Japan), the LAC based electrode materials shows superior capacitive performance in terms of specific capacitance and charge–discharge performance at the high current density.


2016 ◽  
Vol 852 ◽  
pp. 921-927 ◽  
Author(s):  
Huan Lin ◽  
Dong Lin Zhao ◽  
Ran Ran Yao ◽  
Zhao Hui Qiang ◽  
Wan Xin Zhang ◽  
...  

A homogeneous Ni (OH)2/graphene nanosheet (GNS) nanocomposite with excellent supercapacitive performance has been synthesized by a facile chemical precipitation. The Ni (OH)2/GNS nanocomposite presented an ideal morphology with the nanosized Ni (OH)2 particles homogeneously growing on the GNS. Its microstructure, morphology were investigated by XRD, SEM and TEM. The electrochemical performance of the Ni (OH)2/GNS nanocomposite was test by cyclic voltammetry, galvanostatic charge−discharge and electrochemical impedance spectroscopy techniques. The homogeneous Ni (OH)2/GNS nanocomposite exhibited a high specific capacitance of 1667 F/g at a current density of 1A/g and maintained a good stability in 5000 cycles, suggesting that it can be a promising candidate for supercapacitor. The high specific capacitance and remarkable rate capability are promising for applications in supercapacitors with both high energy and power densities. The Ni (OH)2/GNS nanocomposite exhibited large specific capacitance, high rate capability and good cycling stability.


2016 ◽  
Vol 4 (21) ◽  
pp. 8283-8290 ◽  
Author(s):  
Dong Ji ◽  
Hu Zhou ◽  
Jian Zhang ◽  
Yuanyuan Dan ◽  
Hongxun Yang ◽  
...  

3DGN and MOF-derived metal oxide composites as free-standing electrodes for supercapacitors have been reported for the first time which exhibit a high specific capacitance, good rate capability and excellent long cycle stability.


2017 ◽  
Vol 10 (05) ◽  
pp. 1750057 ◽  
Author(s):  
Xiaolan Song ◽  
Hailong Duan ◽  
Ying Zhang ◽  
Haibo Wang ◽  
Hongyun Cao

In this study, composite [Formula: see text]-MnO2/activated carbon (AC) was prepared by chemical deposition method, and then it was assembled into electrode and electrochemical capacitor. Effects of reaction temperature and MnO2 content were studied. Materials were characterized by X-ray diffraction, scanning electron microscope and electrochemical test. MnO2 prepared at 30[Formula: see text]C was amorphous, and it displayed the high specific capacitance as nearly four times as MnO2 at 80[Formula: see text]C. Due to MnO2 particles which would block carbon pores when its content was too high, the composite containing 30% of MnO2 exhibited the largest specific capacitance of 278.3[Formula: see text]F/g at 0.2[Formula: see text]A/g in K2SO4 electrolyte. The equivalent series resistance and charge transfer resistance of material were only 1.35[Formula: see text][Formula: see text] and 1.41[Formula: see text][Formula: see text], respectively. After 1000 cycles, the capacitance retention was still 91.6%. It indicated that chemical deposition was a facile, low cost and effective method to prepare MnO2/AC with good electrochemical performances.


2018 ◽  
Vol 6 (4) ◽  
pp. 1601-1611 ◽  
Author(s):  
Yongsheng Fu ◽  
Xiangyu Gao ◽  
Daosong Zha ◽  
Junwu Zhu ◽  
Xiaoping Ouyang ◽  
...  

An electrode consisting of yolk–shell-structured MnO2 microspheres with oxygen vacancies exhibits high specific capacitance, excellent cycling stability (10 000 cycles) and superior rate capability.


Sign in / Sign up

Export Citation Format

Share Document