scholarly journals Use of electrospinning and dynamic air focusing to create three-dimensional cell culture scaffolds in microfluidic devices

The Analyst ◽  
2016 ◽  
Vol 141 (18) ◽  
pp. 5311-5320 ◽  
Author(s):  
Chengpeng Chen ◽  
Benjamin T. Mehl ◽  
Scott A. Sell ◽  
R. Scott Martin

An air focusing technique was used to directly electrospin fibers into fully sealed microfluidic devices for 3D cell culture.

2011 ◽  
Vol 16 (3) ◽  
pp. 171-185 ◽  
Author(s):  
Sara I. Montanez-Sauri ◽  
Kyung Eun Sung ◽  
John P. Puccinelli ◽  
Carolyn Pehlke ◽  
David J. Beebe

2021 ◽  
Vol 37 (1) ◽  
pp. 87-94
Author(s):  
S.V. Nikulin ◽  
B.Ya. Alekseev ◽  
A.N Gorbunov ◽  
I.M. Vatsuro ◽  
V.V. Kovalev ◽  
...  

A comparative study of the toxicity of two unsubstituted calixarenes consisting of 4 and 6 phenolic fragments, as well as their p-sulfated derivatives, was carried out on the HT-29 colorectal adenocarcinoma cells cultured in two-dimensional (2D) and three-dimensional (3D) formats. It was shown that both unsubstituted calixarenes decrease the viability of tumor cells; calix[4]arene and calix[6]arene exhibited a cytostatic and a cytotoxic effect, respectively. Sulfated derivatives of calixarenes did not have a pronounced toxic effect on HT-29 cells. However, due to their high hydrophilicity and the ability to form adducts with various therapeutic molecules, they can be used for delivery of anticancer drugs. calixarenes, cytotoxicity, HT-29 cells, 2D cell culture, 3D cell culture The work was financially supported by the Russian Science Foundation (project no. 19-15-00397).


RSC Advances ◽  
2015 ◽  
Vol 5 (110) ◽  
pp. 90596-90601 ◽  
Author(s):  
Rong Fan ◽  
Yihang Sun ◽  
Jiandi Wan

Leaf-inspired artificial microvascular networks (LIAMN) for 3D cell culture in hydrogel constructs.


2016 ◽  
Vol 27 (6) ◽  
pp. 652-656 ◽  
Author(s):  
Emmanuel João Nogueira Leal Silva ◽  
Nancy Kudsi de Carvalho ◽  
Carina Taboada Ronconi ◽  
Gustavo De-Deus ◽  
Mario Luis Zuolo ◽  
...  

Abstract The aim of the present study was to evaluate the cytotoxic effects of five endodontic sealers (AH Plus, Endomethasone N, EndoSequence BC, MTA Fillapex and Pulp Canal Sealer EWT) using a three-dimensional (3D) cell culture model. A conventional bi-dimensional (2D) cell culture model was used as reference technique for comparison. Balb/c 3T3 fibroblasts were cultured in conventional bi-dimensional cell culture and in rat-tail collagen type I three-dimensional cell culture models. Then, both cell cultures were incubated with elutes of freshly mixed endodontic sealers for 24 h. Cell viability was measured by the methyl-thiazol-diphenyltetrazolium assay (MTT). Data were statistically analyzed using ANOVA and the Tukey test at a significance level of p<0.05. All tested sealers exhibited cytotoxic effects; however, cytotoxic effect was culture model- and sealer-dependent. Sealers showed higher cytotoxicity in 2D than in 3D cell culture model (p<0.05). In both conditions, EndoSequence BC showed the lowest cytotoxicity (p<0.05). MTA Fillapex was much more cytotoxic than the other tested endodontic sealers (p<0.05), with the exception of AH Plus in the 2D cell culture model (p>0.05). Endomethasone N and Pulp Canal Sealer EWT showed lower cytotoxic effects than AH Plus in 2D cell culture model (p<0.05); however no statistical differences was observed among these sealers in 3D cell culture model. It may be concluded that cytotoxicity was higher in 2D cell culture compared to 3D cell culture. EndoSequence BC sealer exhibited the highest cytocompatibility and MTA Fillapex the lowest cytocompatibility.


2016 ◽  
Vol 3 (6) ◽  
pp. 263-277
Author(s):  
Samille Henriques Pereira ◽  
Denise Soares de Moura Coutinho ◽  
Ana Flávia de Oliveira Gonçalves de Matos ◽  
Willer Ferreira da Silva Junior ◽  
Daniela Leite Fabrino

Two-dimensional cell culture (2D) is the most used technique in studies of mass production of proteins and vaccines; however, this technique is quite limited, since cells lose their phenotypic characteristics when cultured in monolayer. As an alternative, three-dimensional cell culture (3D) allowed cells to be cultured within an environment closer to their natural one, keeping in that way, their physiologic characteristics. When grown in this kind of system, cells form structures called multicellular spheroids, which present in their cores: cellular heterogeneity, microenvironment formation, and different expositions to several factors, such as nutrients and oxygen. This technique has revolutionized researches on drug development and its mechanism of action, since the results obtained in 3D cell culture are more realistic than the ones arisen from 2D cell culture. Recently, there have been developed many 3D cell culture methodologies, however, it misses technology to scale up the biomass growth, which is a great challenge for bioprocess engineers (BE). Therefore, this review aimed to show the technical reality of 3D cell culture and how such professionals can apply their engineering and life science knowledge to improve and develop new technologies that make the use of 3D cell culture feasible and widely used by biotechnological industries.


2018 ◽  
Vol 6 (7) ◽  
pp. 1745-1753 ◽  
Author(s):  
Esra Türker ◽  
Nida Demirçak ◽  
Ahu Arslan-Yildiz

Magnetic levitation platform ensures a scaffold-free 3D cell culture formation by utilizing Gadolinium(iii) chelates, which provide paramagnetic environment for levitation; therefore, the cells are assembled into complex 3D structures.


2018 ◽  
Vol 6 (4) ◽  
pp. 885-892 ◽  
Author(s):  
Weiwei Zhang ◽  
Guoyou Huang ◽  
Kelvin Ng ◽  
Yuan Ji ◽  
Bin Gao ◽  
...  

AAO template-assisted fabrication of ellipsoidal cap-like hydrogel particles as building blocks or sacrificial templates for 3D cell culture.


RSC Advances ◽  
2020 ◽  
Vol 10 (71) ◽  
pp. 43682-43703
Author(s):  
Fahima Akther ◽  
Peter Little ◽  
Zhiyong Li ◽  
Nam-Trung Nguyen ◽  
Hang T. Ta

Hydrogel-based artificial scaffolds and its incorporation with microfluidic devices play a vital role in shifting in vitro models from two-dimensional (2D) cell culture to in vivo like three-dimensional (3D) cell culture


2021 ◽  
Vol 22 (5) ◽  
pp. 2491
Author(s):  
Yujin Park ◽  
Kang Moo Huh ◽  
Sun-Woong Kang

The process of evaluating the efficacy and toxicity of drugs is important in the production of new drugs to treat diseases. Testing in humans is the most accurate method, but there are technical and ethical limitations. To overcome these limitations, various models have been developed in which responses to various external stimuli can be observed to help guide future trials. In particular, three-dimensional (3D) cell culture has a great advantage in simulating the physical and biological functions of tissues in the human body. This article reviews the biomaterials currently used to improve cellular functions in 3D culture and the contributions of 3D culture to cancer research, stem cell culture and drug and toxicity screening.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Laurence Finot ◽  
Eric Chanat ◽  
Frederic Dessauge

AbstractIn vivo study of tissue or organ biology in mammals is very complex and progress is slowed by poor accessibility of samples and ethical concerns. Fortunately, however, advances in stem cell identification and culture have made it possible to derive in vitro 3D “tissues” called organoids, these three-dimensional structures partly or fully mimicking the in vivo functioning of organs. The mammary gland produces milk, the source of nutrition for newborn mammals. Milk is synthesized and secreted by the differentiated polarized mammary epithelial cells of the gland. Reconstructing in vitro a mammary-like structure mimicking the functional tissue represents a major challenge in mammary gland biology, especially for farm animals for which specific agronomic questions arise. This would greatly facilitate the study of mammary gland development, milk secretion processes and pathological effects of viral or bacterial infections at the cellular level, all with the objective of improving milk production at the animal level. With this aim, various 3D cell culture models have been developed such as mammospheres and, more recently, efforts to develop organoids in vitro have been considerable. Researchers are now starting to draw inspiration from other fields, such as bioengineering, to generate organoids that would be more physiologically relevant. In this chapter, we will discuss 3D cell culture systems as organoids and their relevance for agronomic research.


Sign in / Sign up

Export Citation Format

Share Document