scholarly journals Structure of a novel 13 nm dodecahedral nanocage assembled from a redesigned bacterial microcompartment shell protein

2016 ◽  
Vol 52 (28) ◽  
pp. 5041-5044 ◽  
Author(s):  
J. Jorda ◽  
D. J. Leibly ◽  
M. C. Thompson ◽  
T. O. Yeates

We report the crystal structure of a novel 60-subunit dodecahedral cage that results from self-assembly of a re-engineered version of a natural protein (PduA) from the Pdu microcompartment shell.

2014 ◽  
Vol 70 (12) ◽  
pp. 1584-1590 ◽  
Author(s):  
Michael C. Thompson ◽  
Christopher S. Crowley ◽  
Jeffrey Kopstein ◽  
Thomas A. Bobik ◽  
Todd O. Yeates

The EutL shell protein is a key component of the ethanolamine-utilization microcompartment, which serves to compartmentalize ethanolamine degradation in diverse bacteria. The apparent function of this shell protein is to facilitate the selective diffusion of large cofactor molecules between the cytoplasm and the lumen of the microcompartment. While EutL is implicated in molecular-transport phenomena, the details of its function, including the identity of its transport substrate, remain unknown. Here, the 2.1 Å resolution X-ray crystal structure of a EutL shell protein bound to cobalamin (vitamin B12) is presented and the potential relevance of the observed protein–ligand interaction is briefly discussed. This work represents the first structure of a bacterial microcompartment shell protein bound to a potentially relevant cofactor molecule.


2012 ◽  
Vol 68 (12) ◽  
pp. 1642-1652 ◽  
Author(s):  
Allan Pang ◽  
Mingzhi Liang ◽  
Michael B. Prentice ◽  
Richard W. Pickersgill

Lactobacillus reuterimetabolizes two similar three-carbon molecules, 1,2-propanediol and glycerol, within closed polyhedral subcellular bacterial organelles called bacterial microcompartments (metabolosomes). The outer shell of the propanediol-utilization (Pdu) metabolosome is composed of hundreds of mainly hexagonal protein complexes made from six types of protein subunits that share similar domain structures. The structure of the bacterial microcompartment protein PduB has a tandem structural repeat within the subunit and assembles into a trimer with pseudo-hexagonal symmetry. This trimeric structure forms sheets in the crystal lattice and is able to fit within a polymeric sheet of the major shell component PduA to assemble a facet of the polyhedron. There are three pores within the trimer and these are formed between the tandem repeats within the subunits. The structure shows that each of these pores contains three glycerol molecules that interact with conserved residues, strongly suggesting that these subunit pores channel glycerol substrate into the metabolosome. In addition to the observation of glycerol occupying the subunit channels, the presence of glycerol on the molecular threefold symmetry axis suggests a role in locking closed the central region.


2010 ◽  
Vol 114 (14) ◽  
pp. 4802-4810 ◽  
Author(s):  
Xiangkui Ren ◽  
Bin Sun ◽  
Chi-Chun Tsai ◽  
Yingfeng Tu ◽  
Siwei Leng ◽  
...  

2015 ◽  
Vol 17 (41) ◽  
pp. 27653-27657 ◽  
Author(s):  
Jeffrey E. Chen ◽  
Hong-Yuan Lian ◽  
Saikat Dutta ◽  
Saad M. Alshehri ◽  
Yusuke Yamauchi ◽  
...  

This study illustrates the directed self-assembly of mesoporous TiO2 with magnetic properties due to its colloidal crystal structure with Fe3O4.


2021 ◽  
Author(s):  
Nolan W Kennedy ◽  
Carolyn E Mills ◽  
Charlotte H Abrahamson ◽  
Andre Archer ◽  
Michael C Jewett ◽  
...  

Bacterial microcompartments (MCPs) are protein-based organelles that house the enzymatic machinery for metabolism of niche carbon sources, allowing enteric pathogens to outcompete native microbiota during host colonization. While much progress has been made toward understanding MCP biogenesis, questions still remain regarding the mechanism by which core MCP enzymes are enveloped within the MCP protein shell. Here we explore the hypothesis that the shell protein PduB is responsible for linking the shell of the 1,2-propanediol utilization (Pdu) MCP from Salmonella enterica serovar Typhimurium LT2 to its enzymatic core. Using fluorescent reporters, we demonstrate that all members of the Pdu enzymatic core are encapsulated in Pdu MCPs. We also demonstrate that PduB is the sole protein responsible for linking the entire Pdu enzyme core to the MCP shell. Using MCP purifications, transmission electron microscopy, and fluorescence microscopy we find that shell assembly can be decoupled from the enzymatic core, as apparently empty MCPs are formed in Salmonella strains lacking PduB. Mutagenesis studies also reveal that PduB is incorporated into the Pdu MCP shell via a conserved, lysine-mediated hydrogen bonding mechanism. Finally, growth assays and systems-level pathway modeling reveal that unencapsulated pathway performance is strongly impacted by enzyme concentration, highlighting the importance of minimizing polar effects when conducting these functional assays. Together, these results provide insight into the mechanism of enzyme encapsulation within Pdu MCPs and demonstrate that the process of enzyme encapsulation and shell assembly are separate processes in this system, a finding that will aid future efforts to understand MCP biogenesis.


2009 ◽  
Vol 65 (a1) ◽  
pp. s90-s90
Author(s):  
Kinga Suwinska ◽  
Barbara Lesniewska ◽  
Said Jebors ◽  
Anthony W. Coleman

ChemPlusChem ◽  
2017 ◽  
Vol 82 (5) ◽  
pp. 721-731 ◽  
Author(s):  
Delfina Quiñone ◽  
Nicolás Veiga ◽  
Julia Torres ◽  
Carla Bazzicalupi ◽  
Antonio Bianchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document