major shell
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 2)

H-INDEX

8
(FIVE YEARS 0)

Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1925
Author(s):  
Davin H. E. Setiamarga ◽  
Kazuki Hirota ◽  
Masa-aki Yoshida ◽  
Yusuke Takeda ◽  
Keiji Kito ◽  
...  

Despite being a member of the shelled mollusks (Conchiferans), most members of extant cephalopods have lost their external biomineralized shells, except for the basally diverging Nautilids. Here, we report the result of our study to identify major Shell Matrix Proteins and their domains in the Nautilid Nautilus pompilius, in order to gain a general insight into the evolution of Conchiferan Shell Matrix Proteins. In order to do so, we performed a multiomics study on the shell of N. pompilius, by conducting transcriptomics of its mantle tissue and proteomics of its shell matrix. Analyses of obtained data identified 61 distinct shell-specific sequences. Of the successfully annotated 27 sequences, protein domains were predicted in 19. Comparative analysis of Nautilus sequences with four Conchiferans for which Shell Matrix Protein data were available (the pacific oyster, the pearl oyster, the limpet and the Euhadra snail) revealed that three proteins and six protein domains were conserved in all Conchiferans. Interestingly, when the terrestrial Euhadra snail was excluded, another five proteins and six protein domains were found to be shared among the four marine Conchiferans. Phylogenetic analyses indicated that most of these proteins and domains were probably present in the ancestral Conchiferan, but employed in shell formation later and independently in most clades. Even though further studies utilizing deeper sequencing techniques to obtain genome and full-length sequences, and functional analyses, must be carried out in the future, our results here provide important pieces of information for the elucidation of the evolution of Conchiferan shells at the molecular level.



Significance Soon after this unitisation deal, oil major Shell booked a drillship to work on the Gumusut-Kakap project, which it operates. It also finalised the purchase of a subsidiary of France’s Total which holds most of CA-1, a block in Brunei's waters where Jagus East is located. Impacts Brunei-Malaysia relations will grow stronger. Upstream and downstream investments will be a key driver of Brunei’s GDP growth over the next five years. Malaysia will step up efforts to attract new investors to its oil and gas sector.



2020 ◽  
Author(s):  
Davin H. E. Setiamarga ◽  
Kazuki Hirota ◽  
Masa-aki Yoshida ◽  
Yusuke Takeda ◽  
Keiji Kito ◽  
...  

AbstractDespite being a member of the shelled mollusks (Conchiferans), most members of extant cephalopods have lost their external biomineralized shells, except for the Nautiloids. Here, we report the result of our study to identify major Shell Matrix Proteins and their domains in the Nautiloid Nautilus pompilius, in order to gain a general insight into the evolution of Conchiferan Shell Matrix Proteins. In order to do so, we conducted transcriptomics of the mantle, and proteomics of the shell of N. pompilius simultaneously. Analyses of obtained data identified 61 distinct shell-specific sequences. Of the successfully annotated 27 sequences, protein domains were predicted in 19. Comparative analysis of Nautilus sequences with four Conchiferans for which Shell Matrix Protein data were available (the pacific oyster, the pearl oyster, the limpet, and the Euhadra snail) revealed that three proteins and six domains of the shell proteins are conserved in all Conchiferans. Interestingly, when the terrestrial Euhadra snail was excluded, another five proteins and six domains were found to be shared among the four marine Conchiferans. Phylogenetic analyses indicated that most of these proteins and domains were present in the ancestral Conchiferan, but employed in shell formation later and independently in most clades. Although further studies utilizing deeper sequencing techniques to obtain genome and full-length sequences, and functional analyses, must be done in the future, our results here provide important pieces of information for the elucidation of the evolution of Conchiferan shells at the molecular level.



2020 ◽  
Vol 101 (5) ◽  
Author(s):  
L. A. Riley ◽  
D. Bazin ◽  
J. Belarge ◽  
P. C. Bender ◽  
B. A. Brown ◽  
...  


2019 ◽  
Vol 100 (4) ◽  
Author(s):  
L. A. Riley ◽  
D. Bazin ◽  
J. Belarge ◽  
P. C. Bender ◽  
B. A. Brown ◽  
...  


2019 ◽  
Vol 36 (6) ◽  
pp. 062101
Author(s):  
Long-Chun Tao ◽  
Y. Ichikawa ◽  
Cen-Xi Yuan ◽  
Y. Ishibashi ◽  
A. Takamine ◽  
...  
Keyword(s):  


2019 ◽  
Vol 12 (24) ◽  
pp. 110-121
Author(s):  
Wael A. Saeed A. Saeed

Quadrupole Q moments and effective charges are calculated for 9C, 11C, 17C and 19C exotic nuclei using shell model calculations. Excitations out of major shell space are taken into account through a microscopic theory which are called core-polarization effects. The simple harmonic oscillator potential is used to generate the single particle matrix elements of 9,11,17,19C. The present calculations with core-polarization effects reproduced the experimental and theoretical data very well.



2018 ◽  
Author(s):  
Daniel Ramos Gonzalez ◽  
Amaia Caro Aramendia ◽  
Angus Davison

AbstractAlthough the land snail Cepaea nemoralis is one of the most thoroughly investigated colour polymorphic species, there have been few recent studies on the inheritance of the shell traits. Previously, it has been shown that the shell polymorphism is controlled by a series of nine or more loci, of which five make a single ‘supergene’ containing tightly linked colour and banding loci and more loosely linked pigmentation, spread band and punctate loci. However, one limitation of earlier work was that putative instances of recombination between loci within the supergene were not easily verified. We therefore generated a new set of C. nemoralis crosses that segregate for colour, banding and pigmentation, and several other unlinked shell phenotype loci. The snails were genotyped using a set of RAD-seq loci that flank the supergene, and instances of recombination tested by comparing inferred supergene genotype against RAD-marker genotype. We found no evidence that suspected ‘recombinant’ individuals are recombinant within the supergene - point estimates of recombination between both colour/banding, and colour/pigmentation loci are zero, with upper limits of 0.8 and 1.8%. Incomplete penetrance and epistasis are a better explanation for the apparent ‘recombinant’ phenotypes. Overall, this work therefore provides a resource for fine mapping of the supergene and other major shell phenotype loci. It also shows that the architecture of the supergene may not be as previously supposed.



2018 ◽  
Vol 15 (3) ◽  
pp. 304-309
Author(s):  
Baghdad Science Journal

The electric quadrupole moments for some scandium isotopes (41, 43, 44, 45, 46, 47Sc) have been calculated using the shell model in the proton-neutron formalism. Excitations out of major shell model space were taken into account through a microscopic theory which is called core polarization effectives. The set of effective charges adopted in the theoretical calculations emerging about the core polarization effect. NushellX@MSU code was used to calculate one body density matrix (OBDM). The simple harmonic oscillator potential has been used to generate the single particle matrix elements. Our theoretical calculations for the quadrupole moments used the two types of effective interactions to obtain the best interaction compared with the experimental data. The theoretical results of the quadrupole moments for some scandium isotopes performed with FPD6 interaction and Bohr-Mottelson effective charge agree with experimental values.



2018 ◽  
Vol 27 (03) ◽  
pp. 1850021 ◽  
Author(s):  
H. G. Ganev

The tensor properties of the [Formula: see text] algebra generators are determined in respect to the reduction chain [Formula: see text], which defines a shell-model coupling scheme of the proton–neutron symplectic model (PNSM). They are further used to calculate the matrix elements of the basic [Formula: see text] operators of the PNSM in the space of fully symmetric representations in the [Formula: see text]-coupled basis using a generalized Wigner–Eckart theorem. The obtained results allow further the matrix elements of any physical operator of interest, such as the relevant transition operators or the collective potential, to be calculated. As an illustration, the matrix elements of the basic irreducible tensor terms which appear in the [Formula: see text] decomposition of the long-range full major-shell mixing proton–neutron quadrupole–quadrupole interaction are presented.



Sign in / Sign up

Export Citation Format

Share Document