Water-induced helical supramolecular polymerization and gel formation of an alkylene-tethered perylene bisimide dyad

2017 ◽  
Vol 53 (1) ◽  
pp. 168-171 ◽  
Author(s):  
Xu Lin ◽  
Hiroki Kurata ◽  
Deepak D. Prabhu ◽  
Mitsuaki Yamauchi ◽  
Tomonori Ohba ◽  
...  

Linking two perylene bisimide dyes through an alkylene tether enforces aggregation in aqueous media, affording helical supramolecular polymers that can form gel-like lyotropic mesophases.

2021 ◽  
Vol 03 (02) ◽  
pp. 174-183
Author(s):  
P. Chidchob ◽  
S. A. H. Jansen ◽  
S. C. J. Meskers ◽  
E. Weyandt ◽  
N. P. van Leest ◽  
...  

The introduction of a chemical additive to supramolecular polymers holds high potential in the development of new structures and functions. In this regard, various donor- and acceptor-based molecules have been applied in the design of these noncovalent polymers. However, the incorporation of boron–nitrogen frustrated Lewis pairs in such architectures is still rare despite their many intriguing properties in catalysis and materials science. The limited choices of suitable boron derivatives represent one of the main limitations for the advancement in this direction. Here, we examine the use of the commercially available tris(pentafluorophenyl)borane with various triphenylamine derivatives to create supramolecular B–N charge transfer systems. Our results highlight the importance of a proper balance between the donor/acceptor strength and the driving force for supramolecular polymerization to achieve stable, long-range ordered B–N systems. Detailed analyses using electron paramagnetic resonance and optical spectroscopy suggest that tris(pentafluorophenyl)borane displays complex behavior with the amide-based triphenylamine supramolecular polymers and may interact in dimers or larger chiral aggregates, depending on the specific structure of the triphenylamines.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Oleksandr Shyshov ◽  
Shyamkumar Vadakket Haridas ◽  
Luca Pesce ◽  
Haoyuan Qi ◽  
Andrea Gardin ◽  
...  

AbstractThe development of powerful methods for living covalent polymerization has been a key driver of progress in organic materials science. While there have been remarkable reports on living supramolecular polymerization recently, the scope of monomers is still narrow and a simple solution to the problem is elusive. Here we report a minimalistic molecular platform for living supramolecular polymerization that is based on the unique structure of all-cis 1,2,3,4,5,6-hexafluorocyclohexane, the most polar aliphatic compound reported to date. We use this large dipole moment (6.2 Debye) not only to thermodynamically drive the self-assembly of supramolecular polymers, but also to generate kinetically trapped monomeric states. Upon addition of well-defined seeds, we observed that the dormant monomers engage in a kinetically controlled supramolecular polymerization. The obtained nanofibers have an unusual double helical structure and their length can be controlled by the ratio between seeds and monomers. The successful preparation of supramolecular block copolymers demonstrates the versatility of the approach.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Elisabeth Weyandt ◽  
Luigi Leanza ◽  
Riccardo Capelli ◽  
Giovanni M. Pavan ◽  
Ghislaine Vantomme ◽  
...  

AbstractMulti-component systems often display convoluted behavior, pathway complexity and coupled equilibria. In recent years, several ways to control complex systems by manipulating the subtle balances of interaction energies between the individual components have been explored and thereby shifting the equilibrium between different aggregate states. Here we show the enantioselective chain-capping and dilution-induced supramolecular polymerization with a Zn2+-porphyrin-based supramolecular system when going from long, highly cooperative supramolecular polymers to short, disordered aggregates by adding a monotopic Mn3+-porphyrin monomer. When mixing the zinc and manganese centered monomers, the Mn3+-porphyrins act as chain-cappers for Zn2+-porphyrin supramolecular polymers, effectively hindering growth of the copolymer and reducing the length. Upon dilution, the interaction between chain-capper and monomers weakens as the equilibria shift and long supramolecular polymers form again. This dynamic modulation of aggregate morphology and length is achieved through enantioselectivity in the aggregation pathways and concentration-sensitive equilibria. All-atom and coarse-grained molecular simulations provide further insights into the mixing of the species and their exchange dynamics. Our combined experimental and theoretical approach allows for precise control of molecular self-assembly and chiral discrimination in complex systems.


2014 ◽  
Vol 5 (20) ◽  
pp. 5895-5899 ◽  
Author(s):  
Qiao Song ◽  
Fei Li ◽  
Xinxin Tan ◽  
Liulin Yang ◽  
Zhiqiang Wang ◽  
...  

This communication describes a new method of fabricating supramolecular polymers through supramolecular polymerization of supramonomers.


2019 ◽  
Vol 10 (23) ◽  
pp. 3210-3216 ◽  
Author(s):  
Cong Wang ◽  
Ze Chen ◽  
Mingyang Liu ◽  
Hua Zhong ◽  
Feng Wang

In this work, coil–rod–coil organogold(i) complexes have been successfully assembled into supramolecular polymers with green phosphorescent emission signal.


2020 ◽  
Vol 11 (38) ◽  
pp. 10405-10413 ◽  
Author(s):  
Torsten Dünnebacke ◽  
Kalathil K. Kartha ◽  
Johannes M. Wiest ◽  
Rodrigo Q. Albuquerque ◽  
Gustavo Fernández

Controlled supramolecular polymerization is used to switch the photoresponsive behaviour of cyanostilbenes from a reversible E/Z photoisomerization in organic solvents to a highly efficient and selective [2 + 2] photocycloaddition in aqueous media.


Gels ◽  
2018 ◽  
Vol 4 (4) ◽  
pp. 81 ◽  
Author(s):  
Vladimir Lozinsky ◽  
Olga Kolosova ◽  
Dmitrii Michurov ◽  
Alexander Dubovik ◽  
Viktor Vasil’ev ◽  
...  

Urea (URE) and guanidine hydrochloride (GHC) possessing strong chaotropic properties in aqueous media were added to DMSO solutions of poly(vinyl alcohol) (PVA) to be gelled via freeze–thaw processing. Unexpectedly, it turned out that in the case of the PVA cryotropic gel formation in DMSO medium, the URE and GHC additives caused the opposite effects to those observed in water, i.e., the formation of the PVA cryogels (PVACGs) was strengthened rather than inhibited. Our studies of this phenomenon showed that such “kosmotropic-like” effects were more pronounced for the PVACGs that were formed in DMSO in the presence of URE additives, with the effects being concentration-dependent. The additives also caused significant changes in the macroporous morphology of the cryogels; the commonly observed trend was a decrease in the structural regularity of the additive-containing samples compared to the additive-free gel sample. The viscosity measurements revealed consistent changes in the intrinsic viscosity, Huggins constant, and the excess activation heat of the viscosity caused by the additives. The results obtained evidently point to the urea-induced decrease in the solvation ability of DMSO with respect to PVA. As a result, this effect can be the key factor that is responsible for strengthening the structure formation upon the freeze–thaw gelation of this polymer in DMSO additionally containing additives such as urea, which is capable of competing with PVA for the solvent.


2004 ◽  
Vol 126 (26) ◽  
pp. 8336-8348 ◽  
Author(s):  
Sheng Yao ◽  
Uwe Beginn ◽  
Tobias Gress ◽  
Marina Lysetska ◽  
Frank Würthner

2018 ◽  
Vol 54 (18) ◽  
pp. 2208-2211 ◽  
Author(s):  
Lingyun Cui ◽  
Yang Jiao ◽  
Anhe Wang ◽  
Luyang Zhao ◽  
Qianqian Dong ◽  
...  

The behavior of PBI self-assembly can be precisely organised by the conjugation of sequence dependent dipeptides in aqueous media resulting in different assembled nanostructures with improved radical anions yield and enhanced photothermal conversion efficiency.


2021 ◽  
Author(s):  
Zaoming Wang ◽  
Gavin Craig ◽  
alexandre legrand ◽  
Frederik Haase ◽  
Saori Minami ◽  
...  

Introduction of porosity into supramolecular gels endows soft materials with functionalities for molecular encapsulation, release, separation and conversion. Metal-organic polyhedra (MOPs), discrete coordination cages containing an internal cavity, have recently been employed as building blocks to construct polymeric gel networks with potential porosity. However, most of the materials can only be synthesized in organic solvents, and the examples of porous, MOP-based hydrogels are scarce. Here, we demonstrate the fabrication of porous hydrogels based on [Rh<sub>2</sub>(OH-bdc)<sub>2</sub>]<sub>12</sub>, a rhodium-based MOP containing hydroxyl groups on its periphery (OH-bdc = 5-hydroxy-1,3-benzenedicarboxylate). By simply deprotonating [Rh<sub>2</sub>(OH-bdc)<sub>2</sub>]<sub>12</sub> with the base NaOH, the supramolecular polymerization between MOPs and organic linkers can be induced in the aqueous solution, leading to the kinetically controllable formation of hydrogels with hierarchical colloidal networks. When heating the deprotonated MOP, Na<sub>x</sub>[Rh<sub>24</sub>(O-bdc)<sub>x</sub>(OH-bdc)<sub>24-x</sub>], to induce gelation, the MOP was found to partially decompose, affecting the mechanical property of the resulting gels. By applying a post-synthetic deprotonation strategy, we show that the deprotonation degree of the MOP can be altered after the gel formation without serious decomposition of the MOPs. Gas sorption measurements confirmed the permanent porosity of the corresponding aerogels obtained from these MOP-based hydrogels, showing potentials for applications in gas sorption and catalysis.


Sign in / Sign up

Export Citation Format

Share Document