Carbon Capture and Storage: concluding remarks

2016 ◽  
Vol 192 ◽  
pp. 581-599 ◽  
Author(s):  
G. C. Maitland

This paper aims to pull together the main points, messages and underlying themes to emerge from the Discussion. It sets these remarks in the context of where Carbon Capture and Storage (CCS) fits into the spectrum of carbon mitigation solutions required to meet the challenging greenhouse gas (GHG) emissions reduction targets set by the COP21 climate change conference. The Discussion focused almost entirely on carbon capture (21 out of 23 papers) and covered all the main technology contenders for this except biological processes. It included (chemical) scientists and engineers in equal measure and the Discussion was enriched by the broad content and perspectives this brought. The major underlying theme to emerge was the essential need for closer integration of materials and process design – the use of isolated materials performance criteria in the absence of holistic process modelling for design and optimisation can be misleading. Indeed, combining process and materials simulation for reverse materials molecular engineering to achieve the required process performance and cost constraints is now within reach and is beginning to make a significant impact on optimising CCS and CCU (CO2 utilisation) processes in particular, as it is on materials science and engineering generally. Examples from the Discussion papers are used to illustrate this potential. The take-home messages from a range of other underpinning research themes key to CCUS are also summarised: new capture materials, materials characterisation and screening, process innovation, membranes, industrial processes, net negative emissions processes, the effect of GHG impurities, data requirements, environment sustainability and resource management, and policy. Some key points to emerge concerning carbon transport, utilisation and storage are also included, together with some overarching conclusions on how to develop more energy- and cost-effective CCS processes through improved integration of approach across the science-engineering spectrum. The discussion was first-rate in the best traditions of Faraday Discussions and hopefully will foster and stimulate further cross-disciplinary interactions and holistic approaches.

Author(s):  
Pratap G. Patil

The study is in the background of the present status of CO2 in atmosphere. Further the scope of the study is to have an idea about development of CCS technology in India few more countries. The key objective of the Research Project is “To study the development of CCS technology in reducing the GHG emissions to restrain global warming” In pursuing the above research objective, the study focused on the components of CCS technology with reference to power sector in detail so as to understand the feasibility of the concerned technologies; their applicability to the India and other few countries; The scope of CCS Technology aims to: • Enhancing efficiency of power plants by emerging technologies to reduce emission of CO2 per megawatt to reduce process load on capture technology; • Capturing and Separating CO2 from the gas streams emitted from combustion; • Transporting the captured CO2 to underground storage.


2013 ◽  
Vol 04 (10) ◽  
pp. 1088-1098 ◽  
Author(s):  
Richard A. Beck ◽  
Yolanda M. Price ◽  
S. Julio Friedmann ◽  
Lynn Wilder ◽  
Lee Neher

Author(s):  
Amanda Boyd

Carbon capture and storage (CCS) has emerged as a potential strategy for reducing greenhouse gas (GHG) emissions. It involves the capture of carbon dioxide (CO2) emissions from large point source emitters, such as coal-fired power plants. The CO2 is transported to a storage location, where it is isolated from the atmosphere in stable underground reservoirs. CCS technology has been particularly intriguing to countries that utilize fossil fuels for energy production and are seeking ways to reduce their GHG emissions. While there has been an increase in technological development and research in CCS, some members of the public, industry, and policymakers regard the technology as controversial. Some proponents see CCS as a climate change mitigation technology that will be essential to reducing CO2 emissions. Others view CCS as an environmentally risky, complex, and expensive technology that is resource-intensive, promotes the continued extraction of fossil fuels, and competes with renewable energy investments. Effective communication about CCS begins with understanding the perceptions of the general public and individuals living in the communities where CCS projects are sited or proposed. Most people may never live near a CCS site, but may be concerned about risks, such as the cost of development, environmental impacts, and competition with renewable energy sources. Those who live near proposed or operational projects are likely to have a strong impact on the development and deployment of CCS. Individuals in locally affected communities may be more concerned about disruptions to sense of place, impact on jobs or economy, or effect on local health and environment. Effective communication about the risks and benefits of CCS has been recognized as a critical factor in the deployment of this technology.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qing Yang ◽  
Hewen Zhou ◽  
Pietro Bartocci ◽  
Francesco Fantozzi ◽  
Ondřej Mašek ◽  
...  

AbstractRecognizing that bioenergy with carbon capture and storage (BECCS) may still take years to mature, this study focuses on another photosynthesis-based, negative-carbon technology that is readier to implement in China: biomass intermediate pyrolysis poly-generation (BIPP). Here we find that a BIPP system can be profitable without subsidies, while its national deployment could contribute to a 61% reduction of carbon emissions per unit of gross domestic product in 2030 compared to 2005 and result additionally in a reduction in air pollutant emissions. With 73% of national crop residues used between 2020 and 2030, the cumulative greenhouse gas (GHG) reduction could reach up to 8620 Mt CO2-eq by 2050, contributing 13–31% of the global GHG emission reduction goal for BECCS, and nearly 4555 Mt more than that projected for BECCS alone in China. Thus, China’s BIPP deployment could have an important influence on achieving both national and global GHG emissions reduction targets.


2010 ◽  
Vol 83 (1) ◽  
pp. 57-66 ◽  
Author(s):  
Deanna M. D'Alessandro ◽  
Thomas McDonald

The development of more efficient processes for CO2 capture from the flue streams of power plants is considered a key to the reduction of greenhouse gas emissions implicated in global warming. Indeed, several U.S. and international climate change initiatives have identified the urgent need for improved materials and methods for CO2 capture. Conventional CO2 capture processes employed in power plants world-wide are typically postcombustion “wet scrubbing” methods involving the absorption of CO2 by amine-containing solvents such as methanolamine (MEA). These present several disadvantages, including the considerable heat required in regeneration of the solvent and the necessary use of inhibitors for corrosion control, which lead to reduced efficiencies and increased costs for electricity production. This perspective article seeks to highlight the most recent advances in new materials for CO2 capture from power plant flue streams, with particular emphasis on the rapidly expanding field of metal–organic frameworks. Ultimately, the development of new classes of efficient, cost-effective, and industrially viable capture materials for application in carbon capture and storage (CCS) systems offers an immense opportunity to reduce atmospheric emissions of greenhouse gases on a national and international scale.


2021 ◽  
Vol 3 ◽  
Author(s):  
Wilfried Rickels ◽  
Alexander Proelß ◽  
Oliver Geden ◽  
Julian Burhenne ◽  
Mathias Fridahl

In one of the central scenarios for meeting an European Union-wide net zero greenhouse gas (GHG) emissions target by 2050, the emissions cap in the European Union Emissions Trading System (EU ETS) becomes net negative. Despite this ambition, no mechanism allows for the inclusion of CO2 removal credits (CRCs) in the EU ETS to date. Amending the EU ETS legislation is required to create enabling conditions for a net negative cap. Here, we conceptually discuss various economic, legal, and political challenges surrounding the integration of CRCs into the EU ETS. To analyze cap-and-trade systems encompassing negative emissions, we introduce the effective (elastic) cap resulting from the integration of CRCs in addition to the regulatory (inelastic) cap, the latter now being binding for the net emissions only. Given current cost estimates for BECCS and DACCS, minimum quantities for the use of removals, as opposed to ceilings as currently discussed, would be required to promote the near-term integration of such technologies. Instead of direct interaction between the companies involved in emissions trading and the providers of CRCs, the regulatory authority could also transitionally act as an intermediary by buying CRCs and supplying them in turn conditional upon observed allowances prices, for example, by supporting a (soft) price collar. Contrary to a price collar without dedicated support from CRCs, in this case (net) compliance with the overall cap is maintained. EU legislation already provides safeguards for physical carbon leakage concerning CCS, making Bioenergy with Carbon Capture and Storage (BECCS) and Direct Air Capture and Storage prioritized for inclusion in the EU ETS. Furthermore, a special opportunity might apply for the inclusion of BECCS installations. Repealing the provision that installations exclusively using biomass are not covered by the ETS Directive, combined with freely allocated allowances to these installations, would allow operators of biomass installations to sell allowances made available through the use of BECCS. Achieving GHG neutrality in the EU by 2050 requires designing suitable incentive systems for CO2 removal, which includes the option to open up EU emissions trading to CRCs.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2406
Author(s):  
Maria João Regufe ◽  
Ana Pereira ◽  
Alexandre F. P. Ferreira ◽  
Ana Mafalda Ribeiro ◽  
Alírio E. Rodrigues

An essential line of worldwide research towards a sustainable energy future is the materials and processes for carbon dioxide capture and storage. Energy from fossil fuels combustion always generates carbon dioxide, leading to a considerable environmental concern with the values of CO2 produced in the world. The increase in emissions leads to a significant challenge in reducing the quantity of this gas in the atmosphere. Many research areas are involved solving this problem, such as process engineering, materials science, chemistry, waste management, and politics and public engagement. To decrease this problem, green and efficient solutions have been extensively studied, such as Carbon Capture Utilization and Storage (CCUS) processes. In 2015, the Paris Agreement was established, wherein the global temperature increase limit of 1.5 °C above pre-industrial levels was defined as maximum. To achieve this goal, a global balance between anthropogenic emissions and capture of greenhouse gases in the second half of the 21st century is imperative, i.e., net-zero emissions. Several projects and strategies have been implemented in the existing systems and facilities for greenhouse gas reduction, and new processes have been studied. This review starts with the current data of CO2 emissions to understand the need for drastic reduction. After that, the study reviews the recent progress of CCUS facilities and the implementation of climate-positive solutions, such as Bioenergy with Carbon Capture and Storage and Direct Air Capture. Future changes in industrial processes are also discussed.


2017 ◽  
Vol 66 ◽  
pp. 129-146 ◽  
Author(s):  
Amit Garg ◽  
P.R. Shukla ◽  
Shrutika Parihar ◽  
Udayan Singh ◽  
Bhushan Kankal

Sign in / Sign up

Export Citation Format

Share Document