MSLVP: prediction of multiple subcellular localization of viral proteins using a support vector machine

2016 ◽  
Vol 12 (8) ◽  
pp. 2572-2586 ◽  
Author(s):  
Anamika Thakur ◽  
Akanksha Rajput ◽  
Manoj Kumar

Knowledge of the subcellular location (SCL) of viral proteins in the host cell is important for understanding their function in depth.

2020 ◽  
Vol 15 (6) ◽  
pp. 517-527
Author(s):  
Yunyun Liang ◽  
Shengli Zhang

Background: Apoptosis proteins have a key role in the development and the homeostasis of the organism, and are very important to understand the mechanism of cell proliferation and death. The function of apoptosis protein is closely related to its subcellular location. Objective: Prediction of apoptosis protein subcellular localization is a meaningful task. Methods: In this study, we predict the apoptosis protein subcellular location by using the PSSMbased second-order moving average descriptor, nonnegative matrix factorization based on Kullback-Leibler divergence and over-sampling algorithms. This model is named by SOMAPKLNMF- OS and constructed on the ZD98, ZW225 and CL317 benchmark datasets. Then, the support vector machine is adopted as the classifier, and the bias-free jackknife test method is used to evaluate the accuracy. Results: Our prediction system achieves the favorable and promising performance of the overall accuracy on the three datasets and also outperforms the other listed models. Conclusion: The results show that our model offers a high throughput tool for the identification of apoptosis protein subcellular localization.


2010 ◽  
Vol 20 (01) ◽  
pp. 13-28 ◽  
Author(s):  
YANG YANG ◽  
BAO-LIANG LU

Prediction of protein subcellular localization is an important issue in computational biology because it provides important clues for the characterization of protein functions. Currently, much research has been dedicated to developing automatic prediction tools. Most, however, focus on mono-locational proteins, i.e., they assume that proteins exist in only one location. It should be noted that many proteins bear multi-locational characteristics and carry out crucial functions in biological processes. This work aims to develop a general pattern classifier for predicting multiple subcellular locations of proteins. We use an ensemble classifier, called the min-max modular support vector machine (M3-SVM), to solve protein subcellular multi-localization problems; and, propose a module decomposition method based on gene ontology (GO) semantic information for M3-SVM. The amino acid composition with secondary structure and solvent accessibility information is adopted to represent features of protein sequences. We apply our method to two multi-locational protein data sets. The M3-SVMs show higher accuracy and efficiency than traditional SVMs using the same feature vectors. And the GO decomposition also helps to improve prediction accuracy. Moreover, our method has a much higher rate of accuracy than existing subcellular localization predictors in predicting protein multi-localization.


2019 ◽  
Vol 20 (9) ◽  
pp. 2344
Author(s):  
Yang Yang ◽  
Huiwen Zheng ◽  
Chunhua Wang ◽  
Wanyue Xiao ◽  
Taigang Liu

To reveal the working pattern of programmed cell death, knowledge of the subcellular location of apoptosis proteins is essential. Besides the costly and time-consuming method of experimental determination, research into computational locating schemes, focusing mainly on the innovation of representation techniques on protein sequences and the selection of classification algorithms, has become popular in recent decades. In this study, a novel tri-gram encoding model is proposed, which is based on using the protein overlapping property matrix (POPM) for predicting apoptosis protein subcellular location. Next, a 1000-dimensional feature vector is built to represent a protein. Finally, with the help of support vector machine-recursive feature elimination (SVM-RFE), we select the optimal features and put them into a support vector machine (SVM) classifier for predictions. The results of jackknife tests on two benchmark datasets demonstrate that our proposed method can achieve satisfactory prediction performance level with less computing capacity required and could work as a promising tool to predict the subcellular locations of apoptosis proteins.


Sign in / Sign up

Export Citation Format

Share Document