scholarly journals First double hydrophilic graft copolymer bearing a poly(2-hydroxylethyl acrylate) backbone synthesized by sequential RAFT polymerization and SET-LRP

2016 ◽  
Vol 7 (18) ◽  
pp. 3156-3164 ◽  
Author(s):  
Yinan Cui ◽  
Xiuyu Jiang ◽  
Chun Feng ◽  
Guangxin Gu ◽  
Jie Xu ◽  
...  

This article reports the first synthesis of well-defined double hydrophilic graft copolymers with a PHEA backbone, by the combination of RAFT polymerization, SET-LRP, and a grafting-from strategy.

2014 ◽  
Vol 5 (17) ◽  
pp. 4915-4925 ◽  
Author(s):  
Xiuyu Jiang ◽  
Xue Jiang ◽  
Guolin Lu ◽  
Chun Feng ◽  
Xiaoyu Huang

This paper reports the first synthesis of well-defined amphiphilic graft copolymers, consisting of a hydrophilic poly(2-hydroxyethyl acrylate) (PHEA) backbone and hydrophobic polystyrene side chains, by the combination of RAFT polymerization, ATRP, and the grafting-from strategy.


2008 ◽  
Vol 86 (6) ◽  
pp. 570-578 ◽  
Author(s):  
Sophie Nguyen

The use of the poly(3-hydroxyalkanoates) in copolymer synthesis has received much interest, as the microbial polyester segments can bring interesting properties, such as biodegradability and biocompatibility. The synthesis, properties, and applications of graft copolymers containing poly(3-hydroxyalkanoates) as main chain or branches are reviewed here, with emphasis on the different preparation methods, which fit into the three main synthesis strategies of graft copolymers: “grafting onto”, “grafting from”, and “grafting through” or macromonomer methods.Key words: poly(3-hydroxyalkanoates), graft copolymer, synthesis, properties, applications.


2016 ◽  
Vol 7 (45) ◽  
pp. 6973-6979 ◽  
Author(s):  
Fangxu Sun ◽  
Chun Feng ◽  
Haoyu Liu ◽  
Xiaoyu Huang

This article reports the synthesis of well-defined graft copolymers containing a PHEA backbone and degradable PDMAEA side chains, by the combination of RAFT polymerization, SET-LRP, and the grafting-from strategy.


e-Polymers ◽  
2012 ◽  
Vol 12 (1) ◽  
Author(s):  
Fatima Zohra Sebba ◽  
Seghier Ould Kada ◽  
Mohamed Benaicha ◽  
Nerjesse Nemiche

AbstractIn this study, 2-oxopropylmethacrylate-terminated poly(N-vinyl-2- pyrrolidone) is produced by cationic polymerization using HClO4 as an initiator. Termination (end capping) step is accomplished using 2- hydroxypropylmethacrylate (2HPMA) and the polymer product has different chain lengths of molecular weight averages ranging from 672 to 3049 g/mol. The study also synthesised amphipathic graft copolymers having hydrophobic poly(α- methylstyrene) as a backbone chain and hydrophilic poly(N-vinyl-2-pyrrolidone) (PVP) as side chains of various lengths. The copolymer synthesis was accomplished by free radical copolymerization of ω-oxopropylmethacrylate PVP in the presence of α-methyl styrene initiated with benzoyl peroxide. Measurements of the dynamic viscosity of the polymer solution (20% weight of macromonomers in ethanol) show that the viscosity is proportional to the average molecular weights M̅n . However, a reverse behaviour of the viscosity variation with regard to M̅n is observed for graft copolymer samples. The viscosity variation with respect to the graft copolymer mass must be due to steric effects, which are strongly pronounced in grafted copolymer chains. Appearance of the number of side chains attached to poly(α-methylstyrene) backbone reveals that the grafting reaction has occurred with good efficiency.


2021 ◽  
Vol 10 ◽  
pp. 27-36
Author(s):  
K. V. Allahverdiyeva ◽  

The influence of the concentration of finely dispersed aluminum and compatibilizer on the resistance to peeling of aluminum foil from the surface of a composite based on low density polyethylene and high density polyethylene is considered. To improve the compatibility of the filler with the polymer matrix, a compatibilizer was used, which is a graft copolymer of polyethylene of various grades with methacrylic acid and maleic anhydride. Copper and aluminum foil was used as a substrate. It is shown that the introduction of a compatibilizer into the composition of aluminum-filled composites improves their peeling resistance. It has been found that if an aluminum filled compatibilizer is used directly as an adhesive, then the peeling resistance of copper and aluminum foil is significantly increased. Graft copolymers of polyethylene with maleic anhydride have the highest peel resistance values. The results of the study of the influence of the pressing temperature on the type of adhesive failure are presented. It is shown that with an increase in the pressing temperature, a mixed type of adhesive destruction is observed. It has been experimentally proved that, in percentage terms, the cohesive type of fracture prevails in composites where graft copolymers are used as a polymer matrix. It was found that a 100 % cohesive type of fracture is observed in foil-clad composites pressed at a temperature of 190 °C, where a graft copolymer of polyethylene with methacrylic acid or maleic anhydride is used as an adhesive.


2020 ◽  
Vol 11 (5) ◽  
pp. 1018-1024 ◽  
Author(s):  
Yifan Zhu ◽  
Eilaf Egap

We report herein the first example of light-controlled radical reversible addition–fragmentation chain transfer polymerization facilitated by cadmium selenide quantum dots and the grafting-from CdSe QDs to create polymer-QDs nanocomposites.


Sign in / Sign up

Export Citation Format

Share Document