Aromatic-like behavior of germanium nanocrystals

RSC Advances ◽  
2016 ◽  
Vol 6 (53) ◽  
pp. 47434-47442 ◽  
Author(s):  
Hadi Behzadi ◽  
Zahra khalilnia

Optimized structures of (A) Ge18H12; (B) Ge19H12, peripheral germanium atoms (GeP), middle-layer germanium atoms (GeM) and the central germanium atom (GeC).

2006 ◽  
Vol 959 ◽  
Author(s):  
Wee Kiong Choi ◽  
Wai Kin Chim ◽  
Han Guan Chew

ABSTRACTThe size of germanium (Ge) nanocrystals in a trilayer memory device structure was controlled by varying the thickness of the middle co-sputtered Ge plus silicon oxide layer. Such confinement of nanocrystals was not effective in a trilayer structure with a pure Ge middle layer. Significant diffusion of Ge atoms through the tunnel oxide or rapid thermal oxide (RTO) layer and into the silicon substrate was observed when the RTO layer thickness of the trilayer structure was reduced. This resulted in no (or very few) nanocrystals formed in the system. A higher charge storage capability was obtained from devices with a thinner RTO layer.


2013 ◽  
Vol 28 (12) ◽  
pp. 1345-1348
Author(s):  
Huan-Xia ZHU ◽  
Ke-Zhi LI ◽  
Jin-Hua LU ◽  
He-Jun LI ◽  
Jian-Yang WANG
Keyword(s):  

2020 ◽  
Author(s):  
Lieber Po-Hung Li ◽  
Ji-Yan Han ◽  
Wei-Zhong Zheng ◽  
Ren-Jie Huang ◽  
Ying-Hui Lai

BACKGROUND The cochlear implant technology is a well-known approach to help deaf patients hear speech again. It can improve speech intelligibility in quiet conditions; however, it still has room for improvement in noisy conditions. More recently, it has been proven that deep learning–based noise reduction (NR), such as noise classification and deep denoising autoencoder (NC+DDAE), can benefit the intelligibility performance of patients with cochlear implants compared to classical noise reduction algorithms. OBJECTIVE Following the successful implementation of the NC+DDAE model in our previous study, this study aimed to (1) propose an advanced noise reduction system using knowledge transfer technology, called NC+DDAE_T, (2) examine the proposed NC+DDAE_T noise reduction system using objective evaluations and subjective listening tests, and (3) investigate which layer substitution of the knowledge transfer technology in the NC+DDAE_T noise reduction system provides the best outcome. METHODS The knowledge transfer technology was adopted to reduce the number of parameters of the NC+DDAE_T compared with the NC+DDAE. We investigated which layer should be substituted using short-time objective intelligibility (STOI) and perceptual evaluation of speech quality (PESQ) scores, as well as t-distributed stochastic neighbor embedding to visualize the features in each model layer. Moreover, we enrolled ten cochlear implant users for listening tests to evaluate the benefits of the newly developed NC+DDAE_T. RESULTS The experimental results showed that substituting the middle layer (ie, the second layer in this study) of the noise-independent DDAE (NI-DDAE) model achieved the best performance gain regarding STOI and PESQ scores. Therefore, the parameters of layer three in the NI-DDAE were chosen to be replaced, thereby establishing the NC+DDAE_T. Both objective and listening test results showed that the proposed NC+DDAE_T noise reduction system achieved similar performances compared with the previous NC+DDAE in several noisy test conditions. However, the proposed NC+DDAE_T only needs a quarter of the number of parameters compared to the NC+DDAE. CONCLUSIONS This study demonstrated that knowledge transfer technology can help to reduce the number of parameters in an NC+DDAE while keeping similar performance rates. This suggests that the proposed NC+DDAE_T model may reduce the implementation costs of this noise reduction system and provide more benefits for cochlear implant users.


2019 ◽  
Vol 75 (2) ◽  
pp. I_997-I_1002
Author(s):  
Teruhisa OKADA ◽  
Masahiro IMAMURA
Keyword(s):  

2021 ◽  
Vol 108 (Supplement_3) ◽  
Author(s):  
R J Burgos Lázaro ◽  
N Burgos Frías ◽  
S Serrano-Fiz García ◽  
V Ospina Mosquera ◽  
F Rojo Pérez ◽  
...  

Abstract INTRODUCTION The surgical indication for ascending aortic aneurysms (AAA) is established when the maximum diameter > 50 mm; It responds to Laplace's Law (T wall = P × r / 2e). The aim of the study is to define wall stress in AAA. MATERIAL AND METHODS 218 ascending aortic walls have been studied: 96 from organ donors, and 122 from AAA: Marfán 58 (47.5%), bicuspid aortic valve 26 (21.4%), and atherosclerosis 38 (31.1%). The samples were studied "in vitro", according to the model Young's (relationship between stress and deformed area), by means of the mechanical traction test (Tension = Force / Area). The analysis was performed with the stress-elongation curve (d Tension / d Elongation). RESULTS The stress of the aortic wall, classified from highest to lowest according to pathology and age was: cystic necrosis of the middle layer, arteriosclerosis, age > 60 years, between 35 and 59, and < 34 years. The stress of “control aortas” wall increased directly in relation to the age of the donors. CONCLUSIONS The maximum diameter of the ascending aorta, the patient's type of pathology and age are factors that affect the maximum tension of the aortic wall and resistance, factors that allow differentiation and prediction of the risk of rupture of the AAA. The validation of the results obtained through numerical simulation was significant and the uniaxial analysis has modeled the response of the vessels to their internal pressure.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Leila Javazmi ◽  
Anthony Young ◽  
Gavin J. Ash ◽  
Tobias Low

AbstractFertilisers are essential in modern agriculture to enhance plant growth, crop production and product quality. Recent research has focused on the development of delivery systems designed to prolong fertiliser release. This study introduces a new technology to encapsulate and release molecules of fertilisers by using multi-layered electrospun nanofibre as a carrier. Single-layer poly L-lactic acid (PLLA) nanofibres loaded with urea were fabricated using electrospinning. Triple-layer nanofibrous structures were produced by electrospinning polyhydroxybutyrate (PHB) nanofibres as external layers with PLLA nanofibres impregnated with urea fertiliser as the middle layer. Scanning electron microscopy (SEM) and Fourier transform infrared spectrophotometry (FTIR) were employed to characterize the morphology of electrospun nanofibres. Urea release dynamic was analysed using a total nitrogen instrument (TNM-1). The results indicated that triple-layered urea-impregnated nanofibrous structures led to lower initial rate of nitrogen release and slower release rate of cumulative nitrogen which extended for more than three months. It is concluded that triple-layer nanofibrous structures have the potential for slow release delivery of fertilisers.


Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 667
Author(s):  
Raza Ullah ◽  
Sadiq Ullah ◽  
Farooq Faisal ◽  
Rizwan Ullah ◽  
Dong-you Choi ◽  
...  

In this paper, antipodal Vivaldi antenna is designed for 5th generation (5G) mobile communication and Ku-band applications. The proposed designed has three layers. The upper layer consists of eight-element array of split-shaped leaf structures, which is fed by a 1-to-8 power divider network. Middle layer is a substrate made of Rogers 5880. The bottom layer consists of truncated ground and shorter mirror-image split leaf structures. The overall size of the designed antenna is confined significantly to 33.31 × 54.96 × 0.787 (volume in mm3), which is equivalent to 2λo× 3.3λo× 0.05λo (λo is free-space wavelength at 18 GHz). Proposed eight elements antenna is multi-band in nature covering Ku-bands (14.44–20.98 GHz), two millimeter wave (mmW) bands i.e., 24.34–29 GHz and 33–40 GHz, which are candidate frequency bands for 5G communications. The Ku-Band is suitable for radar applications. Proposed eight elements antenna is very efficient and has stable gain for 5G mobile communication and Ku-band applications. The simulation results are experimentally validated by testing the fabricated prototypes of the proposed design.


2021 ◽  
Vol 30 ◽  
pp. 263498332199474
Author(s):  
Qiang Guo ◽  
Kai He ◽  
Hengyuan Xu ◽  
Youyi Wen

With the application of “ λ” type composite skin becoming more and more extensive and diversified, its precise forming technology is also widely concerned. This article mainly solves the quality problems of “ λ” type corner area, such as delamination dispersion and surface wrinkle, which exist in reality commonly in the manufacturing process. The prepreg is heated along the corner area of the tooling to solve the problem that prepreg is difficult to be compacted due to the large modulus of carbon fiber in “ λ” type corner area. Furthermore, two precompaction tests are creatively increased at 16 layers (middle layer) and 32 layers (last layer) for the thick structure, respectively, to ensure the compaction effect of the blank. In addition, combined with the characteristics of highly elastic rubber and carbon fiber-reinforced materials, a new type of soft mold structure with proper flexibility and good stiffness is proposed innovatively through the reasonable placement of carbon fiber-reinforced materials and the setting of exhaust holes according to the structure characteristics of “ λ” type root skin. Through further process verification, it is shown that the improved process has effectively solved the problems of wrinkles and internal delamination at the sharp corners of parts and realized zero-defect manufacturing of “ λ” type root skin for the first time.


2014 ◽  
Vol 43 (18) ◽  
pp. 6605-6609 ◽  
Author(s):  
Kirill V. Zaitsev ◽  
Andrei V. Churakov ◽  
Oleg Kh. Poleshchuk ◽  
Yuri F. Oprunenko ◽  
Galina S. Zaitseva ◽  
...  
Keyword(s):  

The first example of a hypercoordinate oligogermane was prepared and characterized.


Sign in / Sign up

Export Citation Format

Share Document