electrospun nanofibres
Recently Published Documents


TOTAL DOCUMENTS

107
(FIVE YEARS 33)

H-INDEX

24
(FIVE YEARS 3)

Author(s):  
Noorfatimah Yahaya ◽  
Siti Munirah Ishak ◽  
Ahmad Husaini Mohamed ◽  
Sazlinda Kamaruzaman ◽  
Nur Nadhirah Mohamad Zain ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7147
Author(s):  
Vânia Pais ◽  
Carlos Mota ◽  
João Bessa ◽  
José Guilherme Dias ◽  
Fernando Cunha ◽  
...  

As the incidence of small-diameter particles in the air has increased in recent decades, the development of efficient filtration systems is both urgent and necessary. Nanotechnology, more precisely, electrospun nanofibres, has been identified as a potential solution for this issue, since it allows for the production of membranes with high rates of fibres per unit area, increasing the probability of nanoparticle collision and consequent retention. In the present study, the electrospinning technique of polyamide nanofibre production was optimized with the variation of parameters such as polymer concentration, flow rate and needle diameter. The optimized polyamide nanofibres were combined with polypropylene and polyester microfibres to construct a multilayer and multiscale system with an increased filtration efficiency. We observed that the penetration value of the multilayer system with a PA membrane in the composition, produced for 20 min in the electrospinning, is 2.7 times smaller than the penetration value of the system with the absence of micro and nano fibers.


Author(s):  
Chuan Cao ◽  
Peng Zhou ◽  
Zelai Cheng ◽  
Wei Wang ◽  
Yajun Qi ◽  
...  

Author(s):  
Nurul Haiza Sapiee ◽  
Nurul Atiqah Izzati Zulkifly ◽  
Noor Fitrah Abu Bakar

Nanofibres have emerged as a brilliant technology to be applied in various areas due to their excellent properties that include having a great flexibility, prominent specific surface area and structural strength. Electrospinning is one of the most effective and favourable methods to fabricate nanofibres mainly because electrospun nanofibres have been demonstrated to possess small pore sizes, large specific surface area, and can be produced with different functions to fill the need of various applications in industries. Due to their remarkable properties, electrospun nanofibres have been proven to be suitable for applications in food packaging, medical, pharmaceutical and even in tissue engineering. Currently, there have been numerous research utilising both electrospun synthetic and natural polymers. Natural or green polymers are considered more favourable due to their biodegradable properties and potential biocompatibility. Therefore, there has been a shift to include more research regarding these green polymers. Green polymers can source from both plant polysaccharides and animal protein. Considering the different characteristics of synthetic polymers, the processing and fabrication methods may differ and must be adjusted accordingly. To well summarise the development of these green polymer nanofibres, we review fabrication methods of gelatine, honey and cellulose-based nanofibre and their potential applications in industries. There are indeed numerous promising areas for the usage of these green polymers which are based on their splendid individual properties especially when combined to form nanofibres via electrospinning. We hope this will promote continuous research and development for the applications in various industries including but not limited to tissue engineering, biomedical, food and pharmaceutical industries. 


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3257
Author(s):  
Fabrice N. H. Karabulut ◽  
Günther Höfler ◽  
Naveen Ashok Chand ◽  
Gareth W. Beckermann

Electrospun nanofibres can outperform their melt-blown counterparts in many applications, especially air filtration. The different filtration mechanisms of nanofibres are particularly important when it comes to the air filtration of viruses (such as COVID-19) and bacteria. In this work, we present an electrospun nanofibre filter media, FilterLayrTM by NanoLayr Ltd., containing poly(methyl methacrylate)/ethylene vinyl alcohol nanofibres. The outstanding uniformity of the nanofibres was indicated by the good correlation between pressure drop (ΔP) and areal weight with R2 values in the range of 0.82 to 0.98 across various test air velocities. By adjusting the nanofibre areal weight (basis weight), the nanofibre filter media was shown to meet the particle filtration efficiency and breathability requirements of the following internationally accepted facemask and respirator standards: N95 respirator facemask performance in accordance with NIOSH 42CFR84 (filtration efficiency of up to 98.10% at a pressure drop of 226 Pa and 290 Pa at 85 L·min−1 and 120 L·min−1, respectively), Level 2 surgical facemask performance in accordance with ASTM F2299 (filtration efficiency of up to 99.97% at 100 nm particle size and a pressure drop of 44 Pa at 8 L·min−1), and Level 2 filtration efficiency and Level 1 breathability for barrier face coverings in accordance with ASTM F3502 (filtration efficiency of up to 99.68% and a pressure drop of 133 Pa at 60 L·min−1), with Level 2 breathability being achievable at lower nanofibre areal weights.


Author(s):  
Devaraju R ◽  
Heartwin A Pushpadass ◽  
F Magdaline Eljeeva Emerald ◽  
Naveen V Padaki ◽  
B Surendra Nath

2021 ◽  
Vol 897 ◽  
pp. 39-44
Author(s):  
Hsin Nam Ernest Yong ◽  
Kim Yeow Tshai ◽  
Siew Shee Lim

Poly (N-isopropylacrylamide) (PNIPAm) has been one of the most widely studied thermal responsive polymer in tissue engineering owing to its reversible hydrophilic-hydrophobic phase transition across its lower critical solution temperature (~32°C) that is close to human physiological temperatures. Among tissue engineering constructs, nanofibrous scaffolds offer an added advantage in mimicking the morphology of the native extracellular matrix (ECM). Electrospinning has been reported as one of the most facile method to produce PNIPAm nanofibres and neat electrospun nanofibres scaffold is known to possess poor aqueous stability, limiting its use in tissue engineering applications. In contrast, numerous studies on PNIPAm hydrogels have shown relatively good aqueous stability owing to the hydrophilic 3D crosslinked structure of the hydrogel which resist instant dissolution but rather swell to a greater or lesser extent. However, the presence of crosslinkages in PNIPAm hydrogels causes it to be hardly electrospinnable into nanofibres. In the present work, crosslinker free PNIPAm was radical polymerized to a high molecular weight of 385 kDa. To produce nanofibers, electrospinning was carried out on a dedicated %wt of PNIPAm solution containing octaglycidyl polyhedral oligomeric silsesquioxane (OpePOSS) and 2-ethyl-4-methylimidazole (EMI). Resulting PNIPAm nanofibrous network was found to strongly resemble the ECM morphology with fiber diameter of 436.35 ± 187.04 nm, pore size 1.24 ± 1.27 μm and 63.6% total porosity. Aqueous stability was studied in cell culture media over the course of 28 days. The current result shows significant improvement with a gradual mass loss up to a maximum of 35% instead of the near immediate dissolution observed in the case of electrospun neat PNIPAm scaffold without crosslinks.


Author(s):  
Alishba Javeed ◽  
Shamshad Ali ◽  
Awais Khatri ◽  
Raza Ali

Sign in / Sign up

Export Citation Format

Share Document