Engineering of glycyrrhizin capped gold nanoparticles for liver targeting: in vitro evaluation and in vivo biodistribution study

RSC Advances ◽  
2016 ◽  
Vol 6 (51) ◽  
pp. 44944-44954 ◽  
Author(s):  
Shaivee Borker ◽  
Milind Patole ◽  
Alpana Moghe ◽  
Varsha Pokharkar

Glycyrrhizin reduced and stabilized gold nanoparticles as carriers of antiviral drug lamivudine. The presence of glycyrrhizin enhanced uptake and localization of drug loaded gold nanoparticles in hepatocytes.

2013 ◽  
Vol 24 (6) ◽  
pp. 1473-1481 ◽  
Author(s):  
F. Rosso ◽  
V. Quagliariello ◽  
C. Tortora ◽  
A. Di Lazzaro ◽  
A. Barbarisi ◽  
...  

PLoS ONE ◽  
2020 ◽  
Vol 15 (7) ◽  
pp. e0234916
Author(s):  
Yijia Zhang ◽  
Alice T. Liu ◽  
Yvonne R. Cornejo ◽  
Desiree Van Haute ◽  
Jacob M. Berlin

Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2406
Author(s):  
Adamantia Apostolopoulou ◽  
Aristeidis Chiotellis ◽  
Evangelia-Alexandra Salvanou ◽  
Konstantina Makrypidi ◽  
Charalampos Tsoukalas ◽  
...  

Radiolabeled gold nanoparticles (AuNPs) have been widely used for cancer diagnosis and therapy over recent decades. In this study, we focused on the development and in vitro evaluation of four new Au nanoconjugates radiolabeled with technetium-99m (99mTc) via thiol-bearing ligands attached to the NP surface. More specifically, AuNPs of two different sizes (2 nm and 20 nm, referred to as Au(2) and Au(20), respectively) were functionalized with two bifunctional thiol ligands (referred to as L1H and L2H). The shape, size, and morphology of both bare and ligand-bearing AuNPs were characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS) techniques. In vitro cytotoxicity was assessed in 4T1 murine mammary cancer cells. The AuNPs were successfully radiolabeled with 99mTc-carbonyls at high radiochemical purity (>95%) and showed excellent in vitro stability in competition studies with cysteine and histidine. Moreover, lipophilicity studies were performed in order to determine the lipophilicity of the radiolabeled conjugates, while a hemolysis assay was performed to investigate the biocompatibility of the bare and functionalized AuNPs. We have shown that the functionalized AuNPs developed in this study lead to stable radiolabeled nanoconstructs with the potential to be applied in multimodality imaging or for in vivo tracking of drug-carrying AuNPs.


Author(s):  
S Farahani ◽  
N Riyahi Alam ◽  
S Haghgoo ◽  
M Khoobi ◽  
Gh Geraily ◽  
...  

Background: Numerous unique characteristics of the nanosized gold, including high atomic number, low toxicity, and high biocompatibility make it one of the most appropriate nanostructures to boost radiotherapy efficacy. Many in-vivo and in-vitro investigations have indicated that gold nanoparticles (AuNPs) can significantly increase tumor injuries in low kilovoltage radiotherapy. While deep-lying tumors require much higher energy levels with greater penetration power, and investigations carried out in megavoltage energy range show contradictory results.Objective: In this study, we quantitatively assess and compare dose enhancement factors (DEFs) obtained through AuNPs under radiation of Cobalt-60 source (1.25MeV) versus Iridium-192 source (0.380 KeV) using MAGAT gel dosimeter.Material and Methods: MAGAT polymer gel in both pure and combined with 0.2 mM AuNPs was synthesized. In order to quantify the effect of energy on DEF, irradiation was carried out by Co-60 external radiotherapy and Ir-192 internal radiotherapy. Finally, readings of irradiated and non-irradiated gels were performed by MR imaging.Result: The radiation-induced R2 (1/T2) changes of the gel tubes doped with AuNPs compared to control samples, upon irradiation of beams released by Ir-192 source showed a significant dose enhancement (15.31% ±0.30) relative to the Co-60 external radiotherapy (5.85% ±0.14).Conclusion: This preliminary study suggests the feasibility of using AuNPs in radiation therapy (RT), especially in low-energy sources of brachytherapy. In addition, MAGAT polymer gel, as a powerful dosimeter, could be used for 3D visualization of radiation dose distribution of AuNPs in radiotherapy.


2020 ◽  
Vol 16 ◽  
Author(s):  
Xi He ◽  
Wenjun Hu ◽  
Fanhua Meng ◽  
Xingzhou Li

Background: The broad-spectrum antiparasitic drug nitazoxanide (N) has been repositioned as a broad-spectrum antiviral drug. Nitazoxanide’s in vivo antiviral activities are mainly attributed to its metabolitetizoxanide, the deacetylation product of nitazoxanide. In reference to the pharmacokinetic profile of nitazoxanide, we proposed the hypotheses that the low plasma concentrations and the low system exposure of tizoxanide after dosing with nitazoxanide result from significant first pass effects in the liver. It was thought that this may be due to the unstable acyloxy bond of nitazoxanide. Objective: Tizoxanide prodrugs, with the more stable formamyl substituent attached to the hydroxyl group rather than the acetyl group of nitazoxanide, were designed with the thought that they might be more stable in plasma. It was anticipated that these prodrugs might be less affected by the first pass effect, which would improve plasma concentrations and system exposure of tizoxanide. Method: These O-carbamoyl tizoxanide prodrugs were synthesized and evaluated in a mouse model for pharmacokinetic (PK) properties and in an in vitro model for plasma stabilities. Results: The results indicated that the plasma concentration and the systemic exposure of tizoxanide (T) after oral administration of O-carbamoyl tizoxanide prodrugs were much greater than that produced by equimolar dosage of nitazoxanide. It was also found that the plasma concentration and the systemic exposure of tizoxanide glucuronide (TG) were much lower than that produced by nitazoxanide. Conclusion: Further analysis showed that the suitable plasma stability of O-carbamoyl tizoxanide prodrugs is the key factor in maximizing the plasma concentration and the systemic exposure of the active ingredient tizoxanide.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Allison M. Khoo ◽  
Sang Hyun Cho ◽  
Francisco J. Reynoso ◽  
Maureen Aliru ◽  
Kathryn Aziz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document