First-principles investigation of the Schottky contact for the two-dimensional MoS2 and graphene heterostructure

RSC Advances ◽  
2016 ◽  
Vol 6 (65) ◽  
pp. 60271-60276 ◽  
Author(s):  
Biao Liu ◽  
Li-Juan Wu ◽  
Yu-Qing Zhao ◽  
Ling-Zhi Wang ◽  
Meng-Qiu Cai

The electronic properties of an MoS2 and graphene heterostructure are investigated by density functional calculations.

2014 ◽  
Vol 28 (26) ◽  
pp. 1450204 ◽  
Author(s):  
Fayyaz Hussain ◽  
M. Imran ◽  
Y. Q. Cai ◽  
Hafeez Ullah ◽  
Abdul Shakoor ◽  
...  

Bulk ZnO has traditionally been regarded as multifunctional materials for energy and optoelectronics applications. Recently, exploring this material at the nanoscale has been reported and seeking a proper substrate is highly desired. In this work, the structural and electronic properties of graphene like ZnO two-dimensional (2D) monolayer are investigated by first principles calculation based on density functional theory. The alignment of the valence and conduction bands of ZnO with the state of Cu substrate is analyzed. Particularly the attention has been focused on the establishment of a Schottky contact and interfacial charge transfer between the 2D ZnO monolayer and Cu substrate. It is predicted that the electronic charges are accumulated on the Zn and O atoms due to d–d hybridization between Cu and Zn . Our study reveals that the significant interaction between the ZnO and Cu can greatly modify the electronic properties of the ZnO and suggests potential applications in nanoelectronic devices.


RSC Advances ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 952-957 ◽  
Author(s):  
Konstantina Iordanidou ◽  
Michel Houssa ◽  
Clas Persson

Using first principles calculations based on density functional theory the impact of hole doping on the magnetic and electronic properties of two dimensional PtS2 is studied.


2014 ◽  
Vol 989-994 ◽  
pp. 688-693
Author(s):  
Hui Zhao ◽  
Qian Han

We conduct first-principles total-energy density functional calculations to study the ScB2 (0001) surfaces. The optimized surface structures and electronic properties are obtained. The results show that Sc-terminated surface is thermodynamically more favorable in most of range. The relaxations indicate that it is mainly localized within top three layers and it is less relaxation for Sc-terminated surface. The surface induced features in DOS disappear slowly for the B-terminated surface but vanish rapidly for the Sc-terminated surface. For the Sc-terminated surface, it shows strong metallic property. Simultaneously, both termination surfaces are found charge accumulation relative to the idea surface. Sc-B bonds are strengthened result in the outermost interface spacing are all contracted.


1993 ◽  
Vol 48 (1-2) ◽  
pp. 159-164 ◽  
Author(s):  
Michael Springborg

Abstract Results of a theoretical, comparative study of the electronic properties of trans-polyacetylene and polycarbonitrile are reported. Polyacetylene consists of zigzag chains of CH units, whereas polycarbonitrile has every second CH unit replaced by an N atom. Ground-state properties (structure, electronic bonds and bands, densities of states, momentum distributions, and reciprocal form factors) of the periodic, infinite, isolated chains are studied by means of first-principles, density-functional calculations. It is demonstrated how the presence of the (nitrogen) heteroatoms in the backbone of polycarbonitrile leads to a partial localization of the electrons. In order to investigate charged chains, model calculations are subsequently performed. These indicate solitons but not polarons to be stable. In total, the analysis demonstrates how the combination of information that can be obtained from various experiments provides a detailed description of the compounds.


2017 ◽  
Author(s):  
Lyudmyla Adamska ◽  
Sridhar Sadasivam ◽  
Jonathan J. Foley ◽  
Pierre Darancet ◽  
Sahar Sharifzadeh

Two-dimensional boron is promising as a tunable monolayer metal for nano-optoelectronics. We study the optoelectronic properties of two likely allotropes of two-dimensional boron using first-principles density functional theory and many-body perturbation theory. We find that both systems are anisotropic metals, with strong energy- and thickness-dependent optical transparency and a weak (<1%) absorbance in the visible range. Additionally, using state-of-the-art methods for the description of the electron-phonon and electron-electron interactions, we show that the electrical conductivity is limited by electron-phonon interactions. Our results indicate that both structures are suitable as a transparent electrode.


2019 ◽  
Vol 58 (SC) ◽  
pp. SCCB35 ◽  
Author(s):  
Tomoe Yayama ◽  
Anh Khoa Augustin Lu ◽  
Tetsuya Morishita ◽  
Takeshi Nakanishi

Author(s):  
Wei-Feng Xie ◽  
Hao-Ran Zhu ◽  
Shi-Hao Wei

The structural evolutions and electronic properties of Au$_l$Pt$_m$ ($l$+$m$$\leqslant$10) clusters are investigated by using the first$-$principles methods based on density functional theory (DFT). We use Inverse design of materials by...


2014 ◽  
Vol 16 (27) ◽  
pp. 14096-14107 ◽  
Author(s):  
Bhaskar Chilukuri ◽  
Ursula Mazur ◽  
K. W. Hipps

Implication of dispersion interactions on geometric, adsorption and electronic properties of porphyrin monolayer on conductive surfaces using density functional theory.


Sign in / Sign up

Export Citation Format

Share Document