Exonuclease III-assisted substrate fragment recycling amplification strategy for ultrasensitive detection of uranyl by a multipurpose DNAzyme

RSC Advances ◽  
2016 ◽  
Vol 6 (110) ◽  
pp. 108662-108667 ◽  
Author(s):  
Jin-Xiu Cao ◽  
Yong-Sheng Wang ◽  
Jin-Hua Xue ◽  
Yan-Qin Huang ◽  
Ming-Hui Li ◽  
...  

Substrate fragment cleaved by UO22+ hybridizes with SSP6 to form dsDNA, triggering substrate fragment recycling amplification by Exo III.

The Analyst ◽  
2021 ◽  
Author(s):  
Liling Lu ◽  
Xiao Han ◽  
Jingwen Lin ◽  
Yingxin Zhang ◽  
Minghao Qiu ◽  
...  

Herein a rapid and sensitive fluorometric bioanalysis platform for mercury(II) (Hg2+) detection was innovatively developed using ultrathin two-dimensional MXenes (Ti3C2) as fluorescence quencher and Hg2+-induced exonuclease III (Exo III)-assisted target...


2014 ◽  
Vol 6 (15) ◽  
pp. 6082-6087 ◽  
Author(s):  
Hui Ma ◽  
Wei Wei ◽  
Qian Lu ◽  
Zhixin Zhou ◽  
Henan Li ◽  
...  

A label-free DNA biosensor with high sensitivity and selectivity is constructed by using DNA–Ag NCs and Exo III-catalyzed target recycling amplification.


Nanomaterials ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 104
Author(s):  
Fuyuan Zhang ◽  
Linyang Liu ◽  
Shengnan Ni ◽  
Jiankang Deng ◽  
Guo-Jun Liu ◽  
...  

In order to satisfy the need for sensitive detection of Aflatoxin M1 (AFM1), we constructed a simple and signal-on fluorescence aptasensor based on an autocatalytic Exonuclease III (Exo III)-assisted signal amplification strategy. In this sensor, the DNA hybridization on magnetic nanobeads could be triggered by the target AFM1, resulting in the release of a single-stranded DNA to induce an Exo III-assisted signal amplification, in which numerous G-quadruplex structures would be produced and then associated with the fluorescent dye to generate significantly amplified fluorescence signals resulting in the increased sensitivity. Under the optimized conditions, this aptasensor was able to detect AFM1 with a practical detection limit of 9.73 ng kg−1 in milk samples. Furthermore, the prepared sensor was successfully used for detection of AFM1 in the commercially available milk samples with the recovery percentages ranging from 80.13% to 108.67%. Also, the sensor performance was evaluated by the commercial immunoassay kit with satisfactory results.


The Analyst ◽  
2014 ◽  
Vol 139 (11) ◽  
pp. 2884-2889 ◽  
Author(s):  
Xingti Liu ◽  
Qingwang Xue ◽  
Yongshun Ding ◽  
Jing Zhu ◽  
Lei Wang ◽  
...  

A sensitive and label-free DNA detection method was developed based on cascade amplification combining exonuclease-III recycling with rolling circle amplification.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Yubin Li ◽  
Jiaming Yuan ◽  
Zexi Xu

A C-Ag+-C structure-based fluorescence biosensor with novel combination design of exonuclease III (Exo III) dual-recycling amplification is proposed for the application of silver ions (Ag+) detection. Since oligo-1 involves C-C mismatches, the presence of Ag+ can be captured to form C-Ag+-C base pairs, which results in a double-helix structure with a blunt terminus. The double-helix structure can be cleaved by EXO III to release short mononucleotide fragments (trigger DNA) and Ag+. Released Ag+ can form new bindings with oligo-1, and other trigger DNA can be produced in the digestion cycles. Hybridization with the signal DNA (oligo-2) transforms a trigger DNA into double-stranded DNA with blunt terminus which can be cleaved by Exo III to reproduce the trigger DNA and form guanine- (G-) quadruplex DNA. The trigger DNA returns free to the solution and hybridizes with another signal DNA, which realizes the dual-recycling amplification. The G-quadruplex DNA can be reported by N-methylmesoporphyrin IX (NMM), a specific G-quadruplex DNA fluorochrome. This method allows Ag+ to be determined in the 5 to 1500 pmol/L concentration range, with a 2 pmol/L detection limit, and it has been successfully applied to the detection of Ag+ in real samples.


2018 ◽  
Vol 29 (11) ◽  
pp. 3527-3531 ◽  
Author(s):  
Qianhui Mu ◽  
Guangxing Liu ◽  
Dawei Yang ◽  
Xinyue Kou ◽  
Ning Cao ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (49) ◽  
pp. 43501-43508 ◽  
Author(s):  
Hongzhi Wang ◽  
Yu Wang ◽  
Su Liu ◽  
Jinghua Yu ◽  
Yuna Guo ◽  
...  

In this work, a novel electrochemical DNA sensor based on exonuclease III (Exo III)-assisted autocatalytic DNA biosensing platform for ultrasensitive detection of antibiotics has been reported.


Sign in / Sign up

Export Citation Format

Share Document