scholarly journals Sequential catalysis: exploiting a single rhodium(i) catalyst to promote an alkyne hydroacylation–aryl boronic acid conjugate addition sequence

2017 ◽  
Vol 8 (1) ◽  
pp. 536-540 ◽  
Author(s):  
Maitane Fernández ◽  
Matthias Castaing ◽  
Michael C. Willis

We demonstrate that a single Rh(i) complex can promote two mechanistically distinct C–C bond-forming reactions – alkyne hydroacylation and aryl boronic acid conjugate addition – to deliver substituted ketone products from the controlled assembly of three readily available fragments.

Synthesis ◽  
2020 ◽  
Vol 52 (13) ◽  
pp. 1897-1902
Author(s):  
Tatiana V. Magdesieva ◽  
Oleg A. Levitskiy

The results of the DFT studies on the mechanism of the PIII/PV=O catalyzed reductive amination of nitrosoarenes using ArB(OH)2 yielding diaryl amines are reported. This allowed a comparison of the reaction paths and key intermediates of the Cu(I)- and P(III)-mediated reductive aminations of aryl boronic acids using alkylnitrites, nitroso- or nitroarenes, and revealed important similarities in the catalytic reactivity of transition-metal and main-group elements in C(sp2)–N bond-forming reactions. It is shown that both transformations occur via ambiphilic nitrenoid-type key intermediates, the reactivity of which towards the aryl boronic acid is attributed to the presence of both a Lewis acid center (Cu or P) and a Lewis base center (the N or O atoms of the ‘N=O’ component).


2020 ◽  
Vol 23 (28) ◽  
pp. 3206-3225 ◽  
Author(s):  
Amol D. Sonawane ◽  
Mamoru Koketsu

: Over the last decades, many methods have been reported for the synthesis of selenium- heterocyclic scaffolds because of their interesting reactivities and applications in the medicinal as well as in the material chemistry. This review describes the recent numerous useful methodologies on C-Se bond formation reactions which were basically carried out at low and room temperature.


2019 ◽  
Vol 23 (2) ◽  
pp. 188-204 ◽  
Author(s):  
Xiangjun Peng ◽  
Xianyun Xu ◽  
Fujiang Huang ◽  
Qian Liu ◽  
Liangxian Liu

Since Geim and co-workers reported their groundbreaking experiments on graphene, research on graphene oxide (GO) and its derivatives has greatly influenced the field of modern physics, chemistry, device fabrication, material science, and nanotechnology. The unique structure and fascinating properties of these carbon materials can be ascribed to their eminent chemical, electronic, electrochemical, optical, and mechanical properties of GO and its derivatives, particularly compared to other carbon allotropes. The present Review aims to provide an overview on the recent developments in the preparation of GO and its derivatives and their applications in organic reactions. We will first outline the synthesis of GO and its derivatives. Then, we will discuss the major sections about their application as stoichiometric and catalytic oxidants in organic reactions, a particular emphasis on the carbon-carbon, carbon-oxygen, and carbon-nitrogen single bond-forming reactions, as well as carbon-oxygen and carbon-nitrogen double bond-forming reactions. Simultaneously, this Review also describes briefly transition metal supported on GO or its derivatives as a catalyst for organic reaction. Lastly, we will present an outlook of potential areas where GO and its derivatives may be expected to find utility or opportunity for further growth and study.


Synlett ◽  
2020 ◽  
Author(s):  
Debendra K. Mohapatra ◽  
Shivalal Banoth ◽  
Utkal Mani Choudhury ◽  
Kanakaraju Marumudi ◽  
Ajit C. Kunwar

AbstractA concise and convergent stereoselective synthesis of curvulone B is described. The synthesis utilized a tandem isomerization followed by C–O and C–C bond-forming reactions following Mukaiyama-type aldol conditions for the construction of the trans-2,6-disubstituted dihydropyran ring system as the key steps. Other important features of this synthesis are a cross-metathesis, epimerization, and Friedel–Crafts acylation.


2021 ◽  
Author(s):  
Katarina Stefkova ◽  
Matthew Heard ◽  
Ayan Dasgupta ◽  
Rebecca Melen

Triarylboranes have gained substantial attention as catalysts for C–C bond forming reactions due to their remarkable catalytic activities. Herein, we report B(C6F5)3 catalysed cyclopropenation of a wide variety of arylacetylenes...


Sign in / Sign up

Export Citation Format

Share Document